Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
F1000Res ; 10: 1189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35464182

RESUMO

Many patients with COVID-19 experience a range of debilitating symptoms months after being infected, a syndrome termed long-haul COVID. A 68-year-old male presented with lung opacity, fatigue, physical and cognitive weaknesses, loss of smell and lymphocytopenia. After rounds of therapeutic plasma exchange (TPE), the patient returned to normal activities and work. Mechanistically in the patient's peripheral blood mononuclear cells (PBMCs), markers of inflammatory macrophages diminished and markers of lymphocytes, including natural killer (NK) cells and cytotoxic CD8 T-cells, increased. Circulating inflammatory proteins diminished, while positive regulators of tissue repair increased. This case study suggests that TPE has the capacity to treat long-haul COVID.


Assuntos
COVID-19 , Idoso , COVID-19/complicações , COVID-19/terapia , Humanos , Leucócitos Mononucleares , Masculino , Troca Plasmática , Plasmaferese , Síndrome de COVID-19 Pós-Aguda
2.
J Biol Chem ; 286(9): 7370-8, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21186323

RESUMO

Costameres are cellular sites of mechanotransduction in heart and skeletal muscle where dystrophin and its membrane-spanning partner dystroglycan distribute intracellular contractile forces into the surrounding extracellular matrix. Resolution of a functional costamere interactome is still limited but likely to be critical for understanding forms of muscular dystrophy and cardiomyopathy. Dystrophin binds a set of membrane-associated proteins (the dystrophin-glycoprotein complex) as well as γ-actin and microtubules and also is required to align sarcolemmal microtubules with costameres. Ankyrin-B binds to dystrophin, dynactin-4, and microtubules and is required for sarcolemmal association of these proteins as well as dystroglycan. We report here that ankyrin-B interactions with ß2 spectrin and dynactin-4 are required for localization of dystrophin, dystroglycan, and microtubules at costameres as well as protection of muscle from exercise-induced injury. Knockdown of dynactin-4 in adult mouse skeletal muscle phenocopied depletion of ankyrin-B and resulted in loss of sarcolemmal dystrophin, dystroglycan, and microtubules. Moreover, mutations of ankyrin-B and of dynactin-4 that selectively impaired binary interactions between these proteins resulted in loss of their costamere-localizing activity and increased muscle fiber fragility as a result of loss of costamere-associated dystrophin and dystroglycan. In addition, costamere-association of dynactin-4 did not require dystrophin but did depend on ß2 spectrin and ankyrin-B, whereas costamere association of ankyrin-B required ß2 spectrin. Together, these results are consistent with a functional hierarchy beginning with ß2 spectrin recruitment of ankyrin-B to costameres. Ankyrin-B then interacts with dynactin-4 and dystrophin, whereas dynactin-4 collaborates with dystrophin in coordinating costamere-aligned microtubules.


Assuntos
Anquirinas/metabolismo , Proteínas de Transporte/metabolismo , Distrofina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Músculo Esquelético , Animais , Anquirinas/genética , Costâmeros/metabolismo , Complexo Dinactina , Matriz Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Esforço Físico/fisiologia , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
3.
Biol Psychol ; 79(1): 70-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18423837

RESUMO

Working memory-related brain activation has been widely studied, and impaired activation patterns have been reported for several psychiatric disorders. We investigated whether variation in N-back working memory brain activation is genetically influenced in 60 pairs of twins, (29 monozygotic (MZ), 31 dizygotic (DZ); mean age 24.4+/-1.7S.D.). Task-related brain response (BOLD percent signal difference of 2 minus 0-back) was measured in three regions of interest. Although statistical power was low due to the small sample size, for middle frontal gyrus, angular gyrus, and supramarginal gyrus, the MZ correlations were, in general, approximately twice those of the DZ pairs, with non-significant heritability estimates (14-30%) in the low-moderate range. Task performance was strongly influenced by genes (57-73%) and highly correlated with cognitive ability (0.44-0.55). This study, which will be expanded over the next 3 years, provides the first support that individual variation in working memory-related brain activation is to some extent influenced by genes.


Assuntos
Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Química Encefálica/genética , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Individualidade , Imageamento por Ressonância Magnética , Masculino , Modelos Genéticos , Modelos Estatísticos , Oxigênio/sangue , Fenótipo
4.
J Biol Chem ; 282(36): 26552-61, 2007 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-17620337

RESUMO

E-cadherin is a ubiquitous component of lateral membranes in epithelial tissues and is required to form the first lateral membrane domains in development. Here, we identify ankyrin-G as a molecular partner of E-cadherin and demonstrate that ankyrin-G and beta-2-spectrin are required for accumulation of E-cadherin at the lateral membrane in both epithelial cells and early embryos. Ankyrin-G binds to the cytoplasmic domain of E-cadherin at a conserved site distinct from that of beta-catenin. Ankyrin-G also recruits beta-2-spectrin to E-cadherin-beta-catenin complexes, thus providing a direct connection between E-cadherin and the spectrin/actin skeleton. In addition to restricting the membrane mobility of E-cadherin, ankyrin-G and beta-2-spectrin also are required for exit of E-cadherin from the trans-Golgi network in a microtubule-dependent pathway. Ankyrin-G and beta-2-spectrin co-localize with E-cadherin in preimplantation mouse embryos. Moreover, knockdown of either ankyrin-G or beta-2-spectrin in one cell of a two-cell embryo blocks accumulation of E-cadherin at sites of cell-cell contact. E-cadherin thus requires both ankyrin-G and beta-2-spectrin for its cellular localization in early embryos as well as cultured epithelial cells. We have recently reported that ankyrin-G and beta-2-spectrin collaborate in biogenesis of the lateral membrane ( Kizhatil, K., Yoon, W., Mohler, P. J., Davis, L. H., Hoffman, J. A., and Bennett, V. (2007) J. Biol. Chem. 282, 2029-2037 ). Together with the current findings, these data suggest a ankyrin/spectrin-based mechanism for coordinating membrane assembly with extracellular interactions of E-cadherin at sites of cell-cell contact.


Assuntos
Anquirinas/metabolismo , Blastômeros/metabolismo , Caderinas/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/metabolismo , beta Catenina/metabolismo , Rede trans-Golgi/metabolismo , Actinas/metabolismo , Animais , Anquirinas/deficiência , Blastômeros/citologia , Proteínas de Transporte/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Humanos , Junções Intercelulares/genética , Camundongos , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Rede trans-Golgi/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...