Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37662337

RESUMO

Epilepsy is the 4th most prevalent neurological disorder with over 50 million cases worldwide. While a number of drugs exist to suppress seizures, approximately 1/3 of patients remain drug resistant, and no current treatments are disease modifying. Using network and systems-based approaches, we find that the histone methylase EZH2 suppresses epileptogenesis and slows disease progression, via repression of JAK1 and STAT3 signaling in hippocampal neurons. Pharmacological inhibition of JAK1 with the orally available, FDA-approved drug CP690550 (Tofacitinib) profoundly suppresses behavioral and electrographic seizures after the onset of epilepsy across preclinical rodent models of acquired epilepsy. This seizure suppression persists for weeks after drug withdrawal. Identification of an endogenous protective response to status epilepticus in the form of EZH2 induction has highlighted a critical role for the JAK1 kinase and STAT3 in both the initiation and propagation of epilepsy across preclinical rodent models and human disease. Overall, we find that STAT3 is transiently activated after insult, reactivates with spontaneous seizures, and remains targetable for disease modification in chronic epilepsy.

2.
Dev Dyn ; 249(6): 741-753, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32100913

RESUMO

BACKGROUND: Colonic atresias in the Fibroblast growth factor receptor 2IIIb (Fgfr2IIIb) mouse model have been attributed to increased epithelial apoptosis and decreased epithelial proliferation at embryonic day (E) 10.5. We therefore hypothesized that these processes would colocalize to the distal colon where atresias occur (atretic precursor) and would be excluded or minimized from the proximal colon and small intestine. RESULTS: We observed a global increase in intestinal epithelial apoptosis in Fgfr2IIIb -/- intestines from E9.5 to E10.5 that did not colocalize to the atretic precursor. Additionally, epithelial proliferations rates in Fgfr2IIIb -/- intestines were statistically indistinguishable to that of controls at E10.5 and E11.5. At E11.5 distal colonic epithelial cells in mutants failed to assume the expected pseudostratified columnar architecture and the continuity of the adjacent basal lamina was disrupted. Individual E-cadherin-positive cells were observed in the colonic mesenchyme. CONCLUSIONS: Our observations suggest that alterations in proliferation and apoptosis alone are insufficient to account for intestinal atresias and that these defects may arise from both a failure of distal colonic epithelial cells to develop normally and local disruptions in basal lamina architecture.


Assuntos
Apoptose/fisiologia , Colo/metabolismo , Actinas/metabolismo , Animais , Apoptose/genética , Caderinas/metabolismo , Proliferação de Células/fisiologia , Colo/citologia , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Vimentina/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...