Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geosci Data J ; 6(2): 137-150, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31894192

RESUMO

The Ensemble Mars Atmosphere Reanalysis System (EMARS) dataset version 1.0 contains hourly gridded atmospheric variables for the planet Mars, spanning Mars Year (MY) 24 through 33 (1999 through 2017). A reanalysis represents the best estimate of the state of the atmosphere by combining observations that are sparse in space and time with a dynamical model and weighting them by their uncertainties. EMARS uses the Local Ensemble Transform Kalman Filter (LETKF) for data assimilation with the GFDL/NASA Mars Global Climate Model (MGCM). Observations that are assimilated include the Thermal Emission Spectrometer (TES) and Mars Climate Sounder (MCS) temperature retrievals. The dataset includes gridded fields of temperature, wind, surface pressure, as well as dust, water ice, CO2 surface ice and other atmospheric quantities. Reanalyses are useful for both science and engineering studies, including investigations of transient eddies, the polar vortex, thermal tides and dust storms, and during spacecraft operations.

2.
IEEE J Sel Top Appl Earth Obs Remote Sens ; 10(5): 2165-2185, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28824741

RESUMO

Satellite microwave sensors, both active scatterometers and passive radiometers, have been systematically measuring near-surface ocean winds for nearly 40 years, establishing an important legacy in studying and monitoring weather and climate variability. As an aid to such activities, the various wind datasets are being intercalibrated and merged into consistent climate data records (CDRs). The ocean wind CDRs (OW-CDRs) are evaluated by comparisons with ocean buoys and intercomparisons among the different satellite sensors and among the different data providers. Extending the OW-CDR into the future requires exploiting all available datasets, such as OSCAT-2 scheduled to launch in July 2016. Three planned methods of calibrating the OSCAT-2 σo measurements include 1) direct Ku-band σo intercalibration to QuikSCAT and RapidScat; 2) multisensor wind speed intercalibration; and 3) calibration to stable rainforest targets. Unfortunately, RapidScat failed in August 2016 and cannot be used to directly calibrate OSCAT-2. A particular future continuity concern is the absence of scheduled new or continuation radiometer missions capable of measuring wind speed. Specialized model assimilations provide 30-year long high temporal/spatial resolution wind vector grids that composite the satellite wind information from OW-CDRs of multiple satellites viewing the Earth at different local times.

3.
Sci Am ; 291(4): 68-75, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15487672
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...