Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(14): 5141-6, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24639498

RESUMO

The widespread planting of crops genetically engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) places intense selective pressure on pest populations to evolve resistance. Western corn rootworm is a key pest of maize, and in continuous maize fields it is often managed through planting of Bt maize. During 2009 and 2010, fields were identified in Iowa in which western corn rootworm imposed severe injury to maize producing Bt toxin Cry3Bb1. Subsequent bioassays revealed Cry3Bb1 resistance in these populations. Here, we report that, during 2011, injury to Bt maize in the field expanded to include mCry3A maize in addition to Cry3Bb1 maize and that laboratory analysis of western corn rootworm from these fields found resistance to Cry3Bb1 and mCry3A and cross-resistance between these toxins. Resistance to Bt maize has persisted in Iowa, with both the number of Bt fields identified with severe root injury and the ability western corn rootworm populations to survive on Cry3Bb1 maize increasing between 2009 and 2011. Additionally, Bt maize targeting western corn rootworm does not produce a high dose of Bt toxin, and the magnitude of resistance associated with feeding injury was less than that seen in a high-dose Bt crop. These first cases of resistance by western corn rootworm highlight the vulnerability of Bt maize to further evolution of resistance from this pest and, more broadly, point to the potential of insects to develop resistance rapidly when Bt crops do not achieve a high dose of Bt toxin.


Assuntos
Bacillus thuringiensis/química , Toxinas Bacterianas/farmacologia , Besouros/efeitos dos fármacos , Plantas Geneticamente Modificadas/microbiologia , Zea mays/microbiologia , Animais , Besouros/fisiologia , Plantas Geneticamente Modificadas/genética , Zea mays/genética
2.
J Econ Entomol ; 107(1): 352-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24665720

RESUMO

Fitness costs can delay pest resistance to crops that produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt), and past research has found that entomopathogens impose fitness costs of Bt resistance. In addition, entomopathogens can be used for integrated pest management by providing biological control of pests. The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of maize and is currently managed by planting of Bt maize. We tested whether entomopathogenic nematodes and fungi increased mortality of western corn rootworm and whether these entomopathogens increased fitness costs of resistance to Cry3Bb1 maize. We exposed western corn rootworm larvae to two species of nematodes, Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae) and Steinernemafeltiae Filipjev (Rhabditida: Steinernematidae), and to two species of fungi, Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) (strain GHA) and Metarhizium brunneum (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae) (strain F52) in two assay types, namely, seedling mat and small cup. Larval mortality increased with the concentration of H. bacteriophora and S. feltiae in the small cup assay, and with the exception of S. feltiae and B. bassiana in the seedling mat assay, mortality from entomopathogens was significantly greater than zero for the remaining entomopathogens in both assays. However, no fitness costs were observed in either assay type for any entomopathogen. Increased mortality of western corn rootworm larvae caused by these entomopathogens supports their potential use in biological control; however, the lack of fitness costs suggests that entomopathogens will not delay the evolution of Bt resistance in western corn rootworm.


Assuntos
Beauveria , Besouros , Endotoxinas , Metarhizium , Controle Biológico de Vetores , Rabditídios , Animais , Feminino , Resistência a Inseticidas , Masculino , Plantas Geneticamente Modificadas , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...