Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 72(10): 1594-1601, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18513782

RESUMO

Elevated PAH concentrations were detected in bank soils along the Mosel and Saar Rivers in Germany. Information on the identification of PAH sources in this area however remains unclear. This study was able to characterize the PAH sources by application of several approaches, including consideration of the distribution patterns of 45 PAHs (including 16 EPA PAHs and some alkyl PAHs), specific PAH ratios, distribution patterns of n-alkanes and principal component analysis (PCA). In addition, the efficiency of the tested approaches was assessed. The results from the application of the various source identification methods showed that pyrogenic PAHs dominate soil samples collected upstream of the confluence of the Mosel and Saar Rivers, and petrogenic and pyrogenic PAHs dominate samples downstream of the confluence. Based on the analysis of reference materials and organic petrography, the petrogenic input was found to be dominated by coal particles. More detailed information on the petrogenic sources was provided by the n-alkane analyses. The current study concludes that to accurately determine the origin of PAHs, several identification methods must be applied.


Assuntos
Sedimentos Geológicos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Geografia , Alemanha , Análise de Componente Principal , Poluentes Químicos da Água/análise
2.
Water Res ; 40(8): 1686-96, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16620900

RESUMO

A simple classification scheme is suggested to characterize the biological degradation of micropollutants such as pharmaceuticals, musk fragrances and estrogens during wastewater treatment. The scheme should be a basis for the discussion about potential removal efficiencies. Hence, the biological degradation of 25 pharmaceuticals, hormones and fragrances was studied in batch experiments at typical concentration levels using activated sewage sludge originating from nutrient-eliminating municipal wastewater treatment plants. Since pseudo first-order degradation kinetics was observed for all compounds down to ng L(-1) levels, the removal rates can be predicted for various reactor configurations. Therefore dilution of wastewater (e.g. by extraneous water) is expected to reduce the degree of biological removal. Wastewater segregation and treatment at the source are therefore to be favoured for elimination of persistent micropollutants over centralized end-of-pipe treatment. For reactor configurations typical for nutrient removal in municipal wastewater, the derived formula for predicting removal allows the identification of three groups of micropollutants according to their degradation constant k(biol): compounds with k(biol)<0.1 L g(SS)(-1)d(-1) are not removed to a significant extent (<20%), compounds with k(biol)>10 L g(SS)(-1)d(-1) transformed by >90% and in-between moderate removal is expected. Based on the degradation of a heterogeneous group of 35 compounds (including literature data), state of the art biological treatment schemes for municipal wastewater are not efficient in degrading pharmaceuticals: only 4 out of 35 compounds are degraded by more than 90% while 17 compounds are removed by less than 50%.


Assuntos
Preparações Farmacêuticas/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Cinética , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...