Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 195(12): 2807-16, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23585533

RESUMO

Formation of nonnative disulfide bonds in the cytoplasm, so-called disulfide stress, is an integral component of oxidative stress. Quantification of the extent of disulfide bond formation in the cytoplasm of Escherichia coli revealed that disulfide stress is associated with oxidative stress caused by hydrogen peroxide, paraquat, and cadmium. To separate the impact of disulfide bond formation from unrelated effects of these oxidative stressors in subsequent experiments, we worked with two complementary approaches. We triggered disulfide stress either chemically by diamide treatment of cells or genetically in a mutant strain lacking the major disulfide-reducing systems TrxB and Gor. Studying the proteomic response of E. coli exposed to disulfide stress, we found that intracellular disulfide bond formation is a particularly strong inducer of the heat shock response. Real-time quantitative PCR experiments showed that disulfide stress induces the heat shock response in E. coli σ(32) dependently. However, unlike heat shock treatment, which induces these genes transiently, transcripts of σ(32)-dependent genes accumulated over time in disulfide stress-treated cells. Analyzing the stability of σ(32), we found that this constant induction can be attributed to an increase of the half-life of σ(32) upon disulfide stress. This is concomitant with aggregation of E. coli proteins treated with diamide. We conclude that oxidative stress triggers the heat shock response in E. coli σ(32) dependently. The component of oxidative stress responsible for the induction of heat shock genes is disulfide stress. Nonnative disulfide bond formation in the cytoplasm causes protein unfolding. This stabilizes σ(32) by preventing its DnaK- and FtsH-dependent degradation.


Assuntos
Dissulfetos/metabolismo , Escherichia coli/fisiologia , Escherichia coli/efeitos da radiação , Proteínas de Choque Térmico/metabolismo , Estresse Oxidativo , Fator sigma/metabolismo , Estresse Fisiológico , Dissulfetos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Temperatura Alta , Estabilidade Proteica , Reação em Cadeia da Polimerase em Tempo Real , Fator sigma/química , Fator sigma/genética
2.
EMBO J ; 23(1): 160-8, 2004 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-14685279

RESUMO

We have identified and reconstituted a multicomponent redox-chaperone network that appears to be designed to protect proteins against stress-induced unfolding and to refold proteins when conditions return to normal. The central player is Hsp33, a redox-regulated molecular chaperone. Hsp33, which is activated by disulfide bond formation and subsequent dimerization, works as an efficient chaperone holdase that binds to unfolding protein intermediates and maintains them in a folding competent conformation. Reduction of Hsp33 is catalyzed by the glutaredoxin and thioredoxin systems in vivo, and leads to the formation of highly active, reduced Hsp33 dimers. Reduction of Hsp33 is necessary but not sufficient for substrate protein release. Substrate dissociation from Hsp33 is linked to the presence of the DnaK/DnaJ/GrpE foldase system, which alone, or in concert with the GroEL/GroES system, then supports the refolding of the substrate proteins. Upon substrate release, reduced Hsp33 dimers dissociate into inactive monomers. This regulated substrate transfer ultimately links substrate release and Hsp33 inactivation to the presence of available DnaK/DnaJ/GrpE, and, therefore, to the return of cells to non-stress conditions.


Assuntos
Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Oxirredução , Animais , Bovinos , Citrato (si)-Sintase/metabolismo , Cisteína/química , Dimerização , Dissulfetos/química , Ditiotreitol/farmacologia , Polarização de Fluorescência , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiologia , Luciferases/metabolismo , Modelos Biológicos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiologia , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Substâncias Redutoras/farmacologia , Soroalbumina Bovina/metabolismo , Especificidade por Substrato , Suínos , Temperatura , Fatores de Tempo
3.
J Virol ; 76(4): 2014-8, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11799199

RESUMO

Parvovirus B19 is the causative agent of erythema infectiosum. In addition, parvovirus B19 infection may be associated with other disease manifestations, namely, thrombocytopenia or granulocytopenia, spontaneous abortion or hydrops fetalis in pregnant women, acute and chronic arthritis, and systemic lupus erythematosus. Based on sequence homology data, a phospholipase A2 motif has been identified in the VP1 unique region of parvovirus B19. (Y. Li et al., J. Gen. Virol. 82:2821-2825, 2001; Z. Zadori et al., Dev. Cell 1:291-302, 2001). We have established a new in vitro assay based on electrospray ionization tandem mass spectroscopy to show that phospholipase A2 activity is present in the VP1 unique region produced in Escherichia coli and in virus-like particles consisting of combinations of VP1 and VP2 proteins expressed by recombinant baculovirus. The enzyme activity of the VP1 unique region showed typical Ca(2+) dependency and could be inhibited by manoalide and 4-bromophenacylbromide, which bind covalently to lysine and histidine residues, respectively, as part of the active center of the enzyme. By using subfragments, we demonstrated an association between the phospholipase A2-like activity and the carboxy-terminal domain of the VP1 unique region.


Assuntos
Proteínas do Capsídeo , Capsídeo/metabolismo , Parvovirus B19 Humano/enzimologia , Fosfolipases A/genética , Fosfolipases A/metabolismo , Sequência de Aminoácidos , Capsídeo/química , Capsídeo/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Cinética , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/metabolismo , Fosfolipases A/química , Fosfolipases A2 , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização por Electrospray/métodos , Vírion/enzimologia , Vírion/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...