Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(18)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547237

RESUMO

Upon tumor antigen recognition, cytotoxic T lymphocytes (CTLs) and target cells form specialized supramolecular structures, called cytotoxic immunological synapses, which are required for polarized delivery of cytotoxic granules. In previous reports, we described the accumulation of connexin 43 (Cx43)-formed gap junctions (GJs) at natural killer (NK) cell-tumor cell cytotoxic immunological synapse. In this report, we demonstrate the functional role of Cx43-GJs at the cytotoxic immunological synapse established between CTLs and melanoma cells during cytotoxicity. Using confocal microscopy, we evaluated Cx43 polarization to the contact site between CTLs isolated from pMEL-1 mice and B16F10 melanoma cells. We knocked down Cx43 expression in B16F10 cells and evaluated its role in the formation of functional GJs and the cytotoxic activity of CTLs, by calcein transfer and granzyme B activity assays, respectively. We found that Cx43 localizes at CTL/B16F10 intercellular contact sites via an antigen-dependent process. We also found that pMEL-1 CTLs but not wild-type naïve CD8+ T cells established functional GJs with B16F10 cells. Interestingly, we observed that Cx43-GJs were required for an efficient granzyme B activity in target B16F10 cells. Using an HLA-A2-restricted/MART-1-specific CD8+ T-cell clone, we confirmed these observations in human cells. Our results suggest that Cx43-channels are relevant components of cytotoxic immunological synapses and potentiate CTL-mediated tumor cell killing.


Assuntos
Conexina 43/imunologia , Junções Comunicantes/imunologia , Sinapses Imunológicas/imunologia , Melanoma/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Junções Comunicantes/patologia , Humanos , Sinapses Imunológicas/patologia , Melanoma/patologia , Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos/patologia
2.
Int J Implant Dent ; 5(1): 23, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31240421

RESUMO

BACKGROUND: As a growing field in dentistry, the practical education during the undergraduate curriculum in implant dentistry should be extended. Not only the theoretical background but also practical skills are crucial to place implants in patients. In order to determine the exact implant position, several positioning aids are available. In the present laboratory study, the accuracy of implant insertion using two different guiding modes in a group of inexperienced participants was assessed. METHODS: After three-dimensional planning using the data of a cone beam computed tomography of artificial mandibles, surgical templates were manufactured by thermoforming. In region 35, a sleeve for the pilot drill was used, whereas in region 45, a sleeve allowing a full-guided implant insertion was inserted. Subsequently, a total of 104 implants were placed by 52 undergraduates. Radiographical assessment of the three-dimensional accuracy was performed. Furthermore, the time required to insert the implants was recorded. Statistical analysis followed. DISCUSSION: When comparing the three-dimensional accuracy of the virtually planned to the actual inserted implant, a statistically significantly higher accuracy in three-dimensional angulation was achieved for the full-guided (3.388 ± 1.647°) compared to the pilot-drill guided mode (5.792 ± 3.290°). Furthermore, the time required to insert the implant was shorter for the full-guided template (6.23 ± 1.78 min) vs. for the pilot-drill guided (8.84 ± 2.39 min). Both differences reached a statistical significance (p < 0.001). CONCLUSION: Within the limit of this laboratory study, the results suggest that inexperienced surgeons benefit from a full-guided implant insertion. However, the clinical effects have to be discussed as the mismatch was varying in the decimillimeter range.

3.
Front Immunol ; 8: 1067, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919895

RESUMO

Gap junctions (GJs)-mediated intercellular communications (GJICs) are connexin (Cx)-formed plasma membrane channels that allow for the passage of small molecules between adjacent cells, and are involved in several physiopathological processes, including immune responses against cancer. In general, tumor cells are poorly coupled through GJs, mainly due to low Cx expression or reduced channel activity, suggesting that Cxs may have tumor suppressor roles. However, more recent data indicate that Cxs and/or GJICs may also in some cases promote tumor progression. This dual role of Cx channels in tumor outcome may be due, at least partially, to the fact that GJs not only interconnect cells from the same type, such as cancer cells, but also promote the intercellular communication of tumor cells with different types of cells from their microenvironment, and such diverse intercellular interactions have distinctive impact on tumor development. For example, whereas GJ-mediated interactions among tumor cells and microglia have been implicated in promotion of tumor growth, tumor cells delivery to dendritic cells of antigenic peptides through GJs have been associated with enhanced immune-mediated tumor elimination. In this review, we provide an updated overview on the role of GJICs in tumor immunity, focusing on the pro-tumor and antitumor effect of GJs occurring among tumor and immune cells. Accumulated data suggest that GJICs may act as tumor suppressors or enhancers depending on whether tumor cells interact predominantly with antitumor immune cells or with stromal cells. The complex modulation of immune-tumor cell GJICs should be taken into consideration in order to potentiate current cancer immunotherapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...