Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(29): 35321-35331, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37432886

RESUMO

This paper explores the optical properties of an exfoliated MoSe2 monolayer implanted with Cr+ ions, accelerated to 25 eV. Photoluminescence of the implanted MoSe2 reveals an emission line from Cr-related defects that is present only under weak electron doping. Unlike band-to-band transition, the Cr-introduced emission is characterized by nonzero activation energy, long lifetimes, and weak response to the magnetic field. To rationalize the experimental results and get insights into the atomic structure of the defects, we modeled the Cr-ion irradiation process using ab initio molecular dynamics simulations followed by the electronic structure calculations of the system with defects. The experimental and theoretical results suggest that the recombination of electrons on the acceptors, which could be introduced by the Cr implantation-induced defects, with the valence band holes is the most likely origin of the low-energy emission. Our results demonstrate the potential of low-energy ion implantation as a tool to tailor the properties of two-dimensional (2D) materials by doping.

2.
Nanomaterials (Basel) ; 13(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36839025

RESUMO

In this paper, the effectiveness of ultra-low-energy ion implantation as a means of defect engineering in graphene was explored through the measurement of Scanning Kelvin Probe Microscopy (SKPM) and Raman spectroscopy, with boron (B) and helium (He) ions being implanted into monolayer graphene samples. We used electrostatic masks to create a doped and non-doped region in one single implantation step. For verification we measured the surface potential profile along the sample and proved the feasibility of lateral controllable doping. In another experiment, a voltage gradient was applied across the graphene layer in order to implant helium at different energies and thus perform an ion-energy-dependent investigation of the implantation damage of the graphene. For this purpose Raman measurements were performed, which show the different damage due to the various ion energies. Finally, ion implantation simulations were conducted to evaluate damage formation.

3.
Microsc Microanal ; : 1-10, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35722923

RESUMO

In recent years, atomic resolution imaging of two-dimensional (2D) materials using scanning transmission electron microscopy (STEM) has become routine. Individual dopant atoms in 2D materials can be located and identified using their contrast in annular dark-field (ADF) STEM. However, in order to understand the effect of these dopant atoms on the host material, there is now the need to locate and quantify them on a larger scale. In this work, we analyze STEM images of MoS2 monolayers that have been ion-implanted with chromium at ultra-low energies. We use functions from the open-source TEMUL Toolkit to create and refine an atomic model of an experimental image based on the positions and intensities of the atomic columns in the image. We then use the refined model to determine the likely composition of each atomic site. Surface contamination stemming from the sample preparation of 2D materials can prevent accurate quantitative identification of individual atoms. We disregard atomic sites from regions of the image with hydrocarbon surface contamination to demonstrate that images acquired using contaminated samples can give significant atom statistics from their clean regions, and can be used to calculate the retention rate of the implanted ions within the host lattice. We find that some of the implanted chromium ions have been successfully integrated into the MoS2 lattice, with 4.1% of molybdenum atoms in the transition metal sublattice replaced with chromium.

4.
Phys Rev Lett ; 128(16): 166401, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35522498

RESUMO

We study the properties of the Dirac states in SiC-graphene and its hole-doped compositions employing angle-resolved photoemission spectroscopy and density functional theory. The symmetry-selective measurements for the Dirac bands reveal their linearly dispersive behavior across the Dirac point which was termed as the anomalous region in earlier studies. No gap is observed even after boron substitution that reduced the carrier concentration significantly from 3.7×10^{13} cm^{-2} in SiC-graphene to 0.8×10^{13} cm^{-2} (5% doping). The anomalies at the Dirac point are attributed to the spectral width arising from the lifetime and momentum broadening in the experiments. The substitution of boron at the graphitic sites leads to a band renormalization and a shift of the Dirac point towards the Fermi level. The internal symmetries appear to be preserved in SiC-graphene even after significant boron substitutions. These results suggest that SiC-graphene is a good platform to realize exotic science as well as advanced technology where the carrier properties like concentration, mobility, etc., can be tuned keeping the Dirac fermionic properties protected.

6.
ACS Nano ; 15(3): 5449-5458, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33596385

RESUMO

We report the incorporation of substitutional Mn atoms in high-quality, epitaxial graphene on Cu(111), using ultralow-energy ion implantation. We characterize in detail the atomic structure of substitutional Mn in a single carbon vacancy and quantify its concentration. In particular, we are able to determine the position of substitutional Mn atoms with respect to the Moiré superstructure (i.e., local graphene-Cu stacking symmetry) and to the carbon sublattice; in the out-of-plane direction, substitutional Mn atoms are found to be slightly displaced toward the Cu surface, that is, effectively underneath the graphene layer. Regarding electronic properties, we show that graphene doped with substitutional Mn to a concentration of the order of 0.04%, with negligible structural disorder (other than the Mn substitution), retains the Dirac-like band structure of pristine graphene on Cu(111), making it an ideal system in which to study the interplay between local magnetic moments and Dirac electrons. Our work also establishes that ultralow-energy ion implantation is suited for substitutional magnetic doping of graphene. Given the flexibility, reproducibility, and scalability inherent to ion implantation, our work creates numerous opportunities for research on magnetic functionalization of graphene and other two-dimensional materials.

7.
Sci Rep ; 10(1): 8775, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472062

RESUMO

Authors have explored the photo-physical properties of Ho3+-Yb3+ doped BaTiO3 nanocrystals and proposed an intuitive method to probe temperature and crystal phase structure of the matrix. Structural phase change of doped crystals was analyzed in terms of their X-ray diffraction, and it was confirmed through second harmonic generation. We give insights on upconversion of energy of light-emission in Ho3+-Yb3+: BaTiO3 nanocrystals upon a 980 nm laser-light excitation and subsequently, the excited state dynamics were studied with the help of dependence of upconversion luminescence on excitation power and measuring-temperature. To understand the nature of occupancies of the Ho3+ ions at the Ti- and Ba-sites, we performed site-selective, time-resolved spectroscopic measurements at various crystal phases. Based on the lifetime analysis, it is inferred that the Ho3+ ions are present at two types of sites in barium titanate lattice. One of those is the 6-coordinated Ti-site of low symmetry, while the other one is the 12-coordinated Ba-site of higher symmetry. The upconversion emission of the nanocrystals are found to be temperature-sensitive (12 to 300 K), indicating possible use as a self-referenced temperature probe. An analysis of the temperature dependent emissions from 5F4 and 5S2 levels of Ho3+ ions, gives a maximum value of temperature sensitivity ~ 0.0095 K-1 at 12 K. Furthermore, we observe a sharp change in the luminescence intensity at ~180 K due to a ferroelectric phase change of the sample. The correlation of upconversion luminescence with the results of X-ray diffraction and second harmonic generation at different crystal phases implies that the frequency upconversion may be used as a probe of structural change of the lattice.

8.
Sci Rep ; 6: 36342, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27805060

RESUMO

A dual mode rare-earth based vanadate material (YVO4: Ho3+/Yb3+), prepared through ethylene glycol assisted hydrothermal method, demonstrating both downconversion and upconversion, along with systematic investigation of the luminescence spectroscopy within 12-300 K is presented herein. The energy transfer processes have been explored via steady-state and time-resolved spectroscopic measurements and explained in terms of rate equation description and temporal evolution below room temperature. The maximum time for energy migration from host to rare earth (Ho3+) increases (0.157 µs to 0.514 µs) with the material's temperature decreasing from 300 K to 12 K. The mechanism responsible for variation of the transients' character is discussed through thermalization and non-radiative transitions in the system. More significantly, the temperature of the nanocrystals was determined using not only the thermally equilibrated radiative intra-4f transitions of Ho3+ but also the decay time and rise time of vanadate and Ho3+ energy levels. Our studies show that the material is highly suitable for temperature sensing below room temperature. The maximum relative sensor sensitivity using the rise time of Ho3+ energy level (5F4/5S2) is 1.35% K-1, which is the highest among the known sensitivities for luminescence based thermal probes.

9.
ACS Nano ; 9(11): 11398-407, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26446310

RESUMO

A combination of scanning transmission electron microscopy, electron energy loss spectroscopy, and ab initio calculations is used to describe the electronic structure modifications incurred by free-standing graphene through two types of single-atom doping. The N K and C K electron energy loss transitions show the presence of π* bonding states, which are highly localized around the N dopant. In contrast, the B K transition of a single B dopant atom shows an unusual broad asymmetric peak which is the result of delocalized π* states away from the B dopant. The asymmetry of the B K toward higher energies is attributed to highly localized σ* antibonding states. These experimental observations are then interpreted as direct fingerprints of the expected p- and n-type behavior of graphene doped in this fashion, through careful comparison with density functional theory calculations.

10.
Phys Chem Chem Phys ; 17(32): 20741-53, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26206553

RESUMO

Ferroelectric BaTiO3 became a multifunctional material via doping of lanthanide ions (0.3 mol% Er(3+)/3.0 mol% Yb(3+)) and subsequently upconversion luminescence was enhanced by incorporation of Zn(2+) ions. Upconversion luminescence of BaTiO3:Er(3+)/Yb(3+) perovskite nanophosphor has been studied using 800 and 980 nm laser excitations. The emission dynamics is studied with respect to its dependence on input power and external temperature including lifetime. Based on time-resolved spectroscopy, it is inferred that two types of Er(3+) sites are present in the barium titanate lattice. The first one is a short lived component (minor species) present at 6-coordinated Ti-sites of low symmetry while the second one is a long lived component (major species), present at 12-coordinated Ba-sites with high symmetry. The influence of the introduction of Zn(2+) ions on the lifetime of (4)S3/2 and (4)F9/2 levels of Er(3+) ions is also investigated. Enhanced temperature sensing performance (120 K to 505 K) of the material is observed using the fluorescence intensity ratio technique, employing the emission from the thermally coupled, (2)H11/2 and (4)S3/2 energy levels of Er(3+) ions. The defect luminescence of the material is also found to increase upon Zn-doping.


Assuntos
Compostos de Bário/química , Érbio/química , Nanopartículas/química , Temperatura , Titânio/química , Itérbio/química , Zinco/química , Íons/química , Luminescência , Tamanho da Partícula , Propriedades de Superfície
11.
Nano Lett ; 15(8): 5110-5, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26120803

RESUMO

We investigate the structural, electronic, and transport properties of substitutional defects in SiC-graphene by means of scanning tunneling microscopy and magnetotransport experiments. Using ion incorporation via ultralow energy ion implantation, the influence of different ion species (boron, nitrogen, and carbon) can directly be compared. While boron and nitrogen atoms lead to an effective doping of the graphene sheet and can reduce or raise the position of the Fermi level, respectively, (12)C(+) carbon ions are used to study possible defect creation by the bombardment. For low-temperature transport, the implantation leads to an increase in resistance and a decrease in mobility in contrast to undoped samples. For undoped samples, we observe in high magnetic fields a positive magnetoresistance that changes to negative for the doped samples, especially for (11)B(+)- and (12)C(+)-ions. We conclude that the conductivity of the graphene sheet is lowered by impurity atoms and especially by lattice defects, because they result in weak localization effects at low temperatures.

12.
Rev Sci Instrum ; 81(7): 073501, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20687716

RESUMO

A new digital time differential perturbed angular correlation spectrometer, designed to measure the energy of and coincidence time between correlated detector signals, here correlated gamma photons, is presented. The system overcomes limitations of earlier digital approaches and features improved performance and handling. By consequently separating the data recording and evaluation, it permits the simultaneous measurement of decays with several gamma-ray cascades at once and avoids the necessity of premeasurement configuration. Tests showed that the spectrometer reaches a time resolution of 460 ps [using a (60)Co sample and Lu(1.8)Y(0.2)SiO(5):Ce (LYSO) scintillators, otherwise better than 100 ps], an energy resolution that is equivalent to the limit of the used scintillation material, and a processing capability of more than 200,000 gamma quanta per detector and second. Other possible applications of the presented methods include nuclear spectroscopy, positron emission tomography, time of flight studies, lidar, and radar.

13.
Anal Chem ; 78(18): 6314-9, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16970303

RESUMO

X-ray absorption near-edge structure (XANES) was used to study the cubic boron nitride (c-BN) content in the BN films deposited on various substrates by different physical vapor deposition or plasma-enhanced chemical vapor deposition methods. By fitting the XANES curves of thin-film samples using standard spectra of pure c-BN and sp(2)-bonded BN in the films with suitable weight factors, the c-BN contents at the film's surface region and across the film's thickness have been determined quantitatively. The results agree well with the previous transmission electron microscopic observations. The method is proved to be independent of the optical properties of thin film and provides a possibility to evaluate the cubic content of BN films accurately.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...