Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 600(15): 3483-3495, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35738560

RESUMO

Chronic exposure to hypoxia (high-altitude, HA; >4000 m) attenuates the vasodilatory response to exercise and is associated with a persistent increase in basal sympathetic nerve activity (SNA). The mechanism(s) responsible for the reduced vasodilatation and exercise hyperaemia at HA remains unknown. We hypothesized that heightened adrenergic signalling restrains skeletal muscle blood flow during handgrip exercise in lowlanders acclimatizing to HA. We tested nine adult males (n = 9) at sea-level (SL; 344 m) and following 21-28 days at HA (∼4300 m). Forearm blood flow (FBF; duplex ultrasonography), mean arterial pressure (MAP; brachial artery catheter), forearm vascular conductance (FVC; FBF/MAP), and arterial and venous blood sampling (O2 delivery ( DO2${D}_{{{\rm{O}}}_{\rm{2}}}$ ) and uptake ( V̇O2${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ )) were measured at rest and during graded rhythmic handgrip exercise (5%, 15% and 25% of maximum voluntary isometric contraction; MVC) before and after local α- and ß-adrenergic blockade (intra-arterial phentolamine and propranolol). HA reduced ΔFBF (25% MVC: SL: 138.3 ± 47.6 vs. HA: 113.4 ± 37.1 ml min-1 ; P = 0.022) and Δ V̇O2${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ (25% MVC: SL: 20.3 ± 7.5 vs. HA: 14.3 ± 6.2 ml min-1 ; P = 0.014) during exercise. Local adrenoreceptor blockade at HA restored FBF during exercise (25% MVC: SLα-ß blockade : 164.1 ± 71.7 vs. HAα-ß blockade : 185.4 ± 66.6 ml min-1 ; P = 0.947) but resulted in an exaggerated relationship between DO2${D}_{{{\rm{O}}}_{\rm{2}}}$ and V̇O2${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ ( DO2${D}_{{{\rm{O}}}_{\rm{2}}}$ / V̇O2${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ slope: SL: 1.32; HA: slope: 1.86; P = 0.037). These results indicate that tonic adrenergic signalling restrains exercise hyperaemia in lowlanders acclimatizing to HA. The increase in adrenergic restraint is necessary to match oxygen delivery to demand and prevent over perfusion of contracting muscle at HA. KEY POINTS: In exercising skeletal muscle, local vasodilatory signalling and sympathetic vasoconstriction integrate to match oxygen delivery to demand and maintain arterial blood pressure. Exposure to chronic hypoxia (altitude, >4000 m) causes a persistent increase in sympathetic nervous system activity that is associated with impaired functional capacity and diminished vasodilatation during exercise. In healthy male lowlanders exposed to chronic hypoxia (21-28 days; ∼4300 m), local adrenoreceptor blockade (combined α- and ß-adrenergic blockade) restored skeletal muscle blood flow during handgrip exercise. However, removal of tonic adrenergic restraint at high altitude caused an excessive rise in blood flow and subsequently oxygen delivery for any given metabolic demand. This investigation is the first to identify greater adrenergic restraint of blood flow during acclimatization to high altitude and provides evidence of a functional role for this adaptive response in regulating oxygen delivery and demand.


Assuntos
Altitude , Hiperemia , Adrenérgicos , Adulto , Força da Mão/fisiologia , Humanos , Hiperemia/metabolismo , Hipóxia , Masculino , Músculo Esquelético/fisiologia , Oxigênio/metabolismo , Fluxo Sanguíneo Regional/fisiologia
2.
Am J Physiol Heart Circ Physiol ; 322(5): H844-H856, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35333117

RESUMO

Andeans with chronic mountain sickness (CMS) and polycythemia have similar maximal oxygen uptakes to healthy Andeans. Therefore, this study aimed to explore potential adaptations in convective oxygen transport, with a specific focus on sympathetically mediated vasoconstriction of nonactive skeletal muscle. In Andeans with (CMS+, n = 7) and without (CMS-, n = 9) CMS, we measured components of convective oxygen delivery, hemodynamic (arterial blood pressure via intra-arterial catheter), and autonomic responses [muscle sympathetic nerve activity (MSNA)] at rest and during steady-state submaximal cycling exercise [30% and 60% peak power output (PPO) for 5 min each]. Cycling caused similar increases in heart rate, cardiac output, and oxygen delivery at both workloads between both Andean groups. However, at 60% PPO, CMS+ had a blunted reduction in Δtotal peripheral resistance (CMS-, -10.7 ± 3.8 vs. CMS+, -4.9 ± 4.1 mmHg·L-1·min-1; P = 0.012; d = 1.5) that coincided with a greater Δforearm vasoconstriction (CMS-, -0.2 ± 0.6 vs. CMS+, 1.5 ± 1.3 mmHg·mL-1·min-1; P = 0.008; d = 1.7) and a rise in Δdiastolic blood pressure (CMS-, 14.2 ± 7.2 vs. CMS+, 21.6 ± 4.2 mmHg; P = 0.023; d = 1.2) compared with CMS-. Interestingly, although MSNA burst frequency did not change at 30% or 60% of PPO in either group, at 60% Δburst incidence was attenuated in CMS+ (P = 0.028; d = 1.4). These findings indicate that in Andeans with polycythemia, light intensity exercise elicited similar cardiovascular and autonomic responses compared with CMS-. Furthermore, convective oxygen delivery is maintained during moderate-intensity exercise despite higher peripheral resistance. In addition, the elevated peripheral resistance during exercise was not mediated by greater sympathetic neural outflow, thus other neural and/or nonneural factors are perhaps involved.NEW & NOTEWORTHY During submaximal exercise, convective oxygen transport is maintained in Andeans suffering from polycythemia. Light intensity exercise elicited similar cardiovascular and autonomic responses compared with healthy Andeans. However, during moderate-intensity exercise, we observed a blunted reduction in total peripheral resistance, which cannot be ascribed to an exaggerated increase in muscle sympathetic nerve activity, indicating possible contributions from other neural and/or nonneural mechanisms.


Assuntos
Doença da Altitude , Policitemia , Pressão Sanguínea/fisiologia , Doença Crônica , Hemodinâmica/fisiologia , Humanos , Músculo Esquelético/inervação , Oxigênio , Sistema Nervoso Simpático
3.
Am J Physiol Heart Circ Physiol ; 319(1): H192-H202, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502375

RESUMO

Sympathetic vasoconstriction is mediated by α-adrenergic receptors under resting conditions. During exercise, increased sympathetic nerve activity (SNA) is directed to inactive and active skeletal muscle; however, it is unclear what mechanism(s) are responsible for vasoconstriction during large muscle mass exercise in humans. The aim of this study was to determine the contribution of α-adrenergic receptors to sympathetic restraint of inactive skeletal muscle and active skeletal muscle during cycle exercise in healthy humans. In ten male participants (18-35 yr), mean arterial pressure (intra-arterial catheter) and forearm vascular resistance (FVR) and conductance (FVC) were assessed during cycle exercise (60% total peak workload) alone and during combined cycle exercise + handgrip exercise (HGE) before and after intra-arterial blockade of α- and ß-adrenoreceptors via phentolamine and propranolol, respectively. Cycle exercise caused vasoconstriction in the inactive forearm that was attenuated ~80% with adrenoreceptor blockade (%ΔFVR, +81.7 ± 84.6 vs. +9.7 ± 30.7%; P = 0.05). When HGE was performed during cycle exercise, the vasodilatory response to HGE was restrained by ~40% (ΔFVC HGE, +139.3 ± 67.0 vs. cycle exercise: +81.9 ± 66.3 ml·min-1·100 mmHg-1; P = 0.03); however, the restraint of active skeletal muscle blood flow was not due to α-adrenergic signaling. These findings highlight that α-adrenergic receptors are the primary, but not the exclusive mechanism by which sympathetic vasoconstriction occurs in inactive and active skeletal muscle during exercise. Metabolic activity or higher sympathetic firing frequencies may alter the contribution of α-adrenergic receptors to sympathetic vasoconstriction. Finally, nonadrenergic vasoconstrictor mechanisms may be important for understanding the regulation of blood flow during exercise.NEW & NOTEWORTHY Sympathetic restraint of vascular conductance to inactive skeletal muscle is critical to maintain blood pressure during moderate- to high-intensity whole body exercise. This investigation shows that cycle exercise-induced restraint of inactive skeletal muscle vascular conductance occurs primarily because of activation of α-adrenergic receptors. Furthermore, exercise-induced vasoconstriction restrains the subsequent vasodilatory response to hand-grip exercise; however, the restraint of active skeletal muscle vasodilation was in part due to nonadrenergic mechanisms. We conclude that α-adrenergic receptors are the primary but not exclusive mechanism by which sympathetic vasoconstriction restrains blood flow in humans during whole body exercise and that metabolic activity modulates the contribution of α-adrenergic receptors.


Assuntos
Antagonistas Adrenérgicos alfa/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Exercício Físico , Músculo Esquelético/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto , Pressão Sanguínea , Humanos , Masculino , Contração Muscular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/inervação , Fentolamina/farmacologia , Propranolol/farmacologia , Fluxo Sanguíneo Regional , Sistema Nervoso Simpático/efeitos dos fármacos , Vasoconstrição , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...