Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15532, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969671

RESUMO

Acoustic communication is widespread in beetles, is often sexually dimorphic, and plays a significant role in behaviours such as premating recognition, courtship, and copulation. However, the factors that determine the presence or absence of acoustic signalling in a given species remain unclear. We examined acoustic communication in bark beetles (Scolytinae) and pinhole borers (Platypodinae), which are two speciose groups with widespread sound production capabilities. We show that body size along with the sequence of host colonisation predict the presence of acoustic communication, and report, for the first time in the animal kingdom, a size limit-1.9 mm-below which acoustic signalling ceases to be present.


Assuntos
Tamanho Corporal , Besouros , Animais , Besouros/fisiologia , Comunicação Animal , Acústica , Feminino , Masculino , Vocalização Animal/fisiologia
2.
PLoS One ; 19(4): e0297227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635739

RESUMO

Preservation of undeveloped land near urban areas is a common conservation practice. However, ecological processes may still be affected by adjacent anthropogenic activities. Ground-dwelling arthropods are a diverse group of organisms that are critical to ecological processes such as nutrient cycling, which are sensitive to anthropogenic activities. Here, we study arthropod dynamics in a preserve located in a heavily urbanized part of the Sonoran Desert, Arizona, U.S.. We compared arthropod biodiversity and community composition at ten locations, four paired sites representing the urban edge and one pair in the Preserve interior. In total, we captured and identified 25,477 arthropod individuals belonging to 287 lowest practical taxa (LPT) over eight years of sampling. This included 192 LPTs shared between interior and edge sites, with 44 LPTs occurring exclusively in interior sites and 48 LPTs occurring exclusively in edge sites. We found two site pairs had higher arthropod richness on the preserve interior, but results for evenness were mixed among site pairs. Compositionally, the interior and edge sites were more than 40% dissimilar, driven by species turnover. Importantly, we found that some differences were only apparent seasonally; for example edge sites had more fire ants than interior sites only during the summer. We also found that temperature and precipitation were strong predictors of arthropod composition. Our study highlights that climate can interact with urban edge effects on arthropod biodiversity.


Assuntos
Artrópodes , Humanos , Animais , Arizona , Clima , Biodiversidade , Estações do Ano , Ecossistema , Clima Desértico
3.
J Insect Sci ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417130

RESUMO

The parasitoid wasp, Ooencyrtus kuvanae (Howard) (Hymenoptera: Encyrtidae), is a natural enemy of the spongy moth, a significant forest pest in North America. We investigated the oviposition behavior of O. kuvanae females on spongy moth egg masses by (i) presenting female parasitoids with a single spongy moth egg mass that was replaced every day, 2nd day, 4th day, 8th day, or 16th day (which is the total length of the oviposition period) and (ii) presenting female parasitoids with 1, 2, 4, or 8 egg masses at a time. Offspring developmental length ranged from 18 to 24 days. On average, male offspring exhibited faster developmental times, emerging approximately 1 day ahead of females. The amount of time that adult females spent on an egg mass affected the number of parasitized eggs. Specifically, more offspring emerged in the 4-, 8-, and 16-day treatments than in scenarios involving daily or every second-day egg mass replacement. The percentage of male offspring decreased as the number of egg masses presented to females increased. Interestingly, the total number of female offspring remained constant, but the number of male offspring decreased with an increase in the number of egg masses and time spent by the parent within a patch. The observed sexual dimorphism in development time, the influence of resource availability on offspring sex ratios, and flexible oviposition patterns illustrate the adaptability of O. kuvanae in response to varying conditions. These insights have implications for our understanding of parasitoid-host interactions and their potential role in biological control strategies.


Assuntos
Himenópteros , Mariposas , Vespas , Masculino , Feminino , Animais , Himenópteros/fisiologia , Oviposição/fisiologia , Óvulo , Vespas/fisiologia
4.
Environ Entomol ; 53(2): 293-304, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38306466

RESUMO

Oystershell scale (OSS; Lepidosaphes ulmi L.) is an invasive insect that threatens sustainability of aspen (Populus tremuloides Michx.) in the southwestern United States. OSS invasions have created challenges for land managers tasked with maintaining healthy aspen ecosystems for the ecological, economic, and aesthetic benefits they provide. Active management is required to suppress OSS populations and mitigate damage to aspen ecosystems, but before management strategies can be implemented, critical knowledge gaps about OSS biology and ecology must be filled. This study sought to fill these gaps by addressing 3 questions: (i) What is the short-term rate of aspen mortality in OSS-infested stands in northern Arizona, USA? (ii) What are the short-term rates of OSS population growth on trees and OSS spread among trees in aspen stands? (iii) What is the phenology of OSS on aspen and does climate influence phenology? We observed high levels of aspen mortality (annual mortality rate = 10.4%) and found that OSS spread rapidly within stands (annual spread rate = 10-12.3%). We found first, second, and young third instars throughout the year and observed 2 waves of first instars (i.e., crawlers), one throughout the summer and a second in mid-winter. The first wave appeared to be driven by warming seasonal temperatures, but the cause of the second wave is unknown and might represent a second generation. We provide recommendations for future OSS research, including suggestions for more precise quantification of OSS phenology, and discuss how our results can inform management of OSS and invaded aspen ecosystems.


Assuntos
Hemípteros , Populus , Animais , Arizona , Ecossistema , Crescimento Demográfico , Clima
5.
Environ Entomol ; 53(1): 180-187, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38037177

RESUMO

Harvester ants create habitats along nest rims, which some plants use as refugia. These refugia can enhance ecosystem stability to disturbances like drought and grazing, but their potential role in invasion ecology is not yet tested. Here we examine the effects of drought and grazing on nest-rim refugia of 2 harvester ant species: Pogonomyrmex occidentals and P. rugosus. We selected 4 rangeland sites with high harvester ant nest densities in northern Arizona, USA, with pre-existing grazing exclosures adjacent to heavily grazed habitat. Our objective was to determine whether nest refugia were used by native or exotic plant species for each site and scenario of drought and grazing. We measured vegetation cover on nest surfaces, on nest rims, and at 3 distances (3, 5, and 10 m) from nests. At each site, we sampled 2 treatments (grazed/excluded) during 2 seasons (drought/monsoon). We found that nest rims increased vegetation cover compared with background levels at all sites and in almost all scenarios of treatment and season, indicating that nest rims provide important refugia for plants from drought and cattle grazing. In some cases, plants enhanced on nest rims were native grasses such as blue gramma (Bouteloua gracilis) or forbs such as sunflowers (Helianthus petiolaris). However, nest rims at all sites enhanced exotic species, particularly Russian thistle (Salsola tragus), purslane (Portulaca oleracea), and bull thistle (Cirsium vulgare). These results suggest that harvester ants play important roles in invasion ecology and restoration. We discuss potential mechanisms for why certain plant species use nest-rim refugia and how harvester ant nests contribute to plant community dynamics.


Assuntos
Formigas , Ecossistema , Animais , Bovinos , Masculino , Secas , Plantas , Ecologia , Poaceae
6.
J Insect Sci ; 22(4)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35983692

RESUMO

Understanding factors that drive biodiversity distributions is central in ecology and critical to conservation. Elevational gradients are useful for studying the effects of climate on biodiversity but it can be difficult to disentangle climate effects from resource differences among habitat types. Here we compare elevational patterns and influences of environmental variables on ground-dwelling arthropods in open- and forested-habitats. We examine these comparisons in three arthropod functional groups (detritivores, predators, and herbivores) and two taxonomic groups (beetles and arachnids). We sampled twelve sites spanning 1,132 m elevation and four life zones, collecting 4,834 individual ground arthropods identified to 123 taxa. Elevation was a strong predicator for arthropod composition, however, patterns differed among functional and taxonomic groups and individual species between open- and forested-habitats. Beetles, arachnids, and predators decreased with elevation in open habitats but increased in forests showing a significant interaction between habitat type and elevation. Detritivores and herbivores showed no elevational patterns. We found 11 arthropod taxa with linear elevational patterns, seven that peaked in abundance at high elevations, and four taxa at low elevations. We also found eight taxa with parabolic elevational patterns that peaked in abundance at mid-elevations. We found that vegetation composition and productivity had stronger explanatory power for arthropod composition in forested habitats, while ground cover was a stronger predictor in open habitats. Temperature and precipitation were important in both habitats. Our findings demonstrate that relationships between animal diversity and elevation can be mediated by habitat type, suggesting that physiological restraints and resource limitations work differently between habitat types.


Assuntos
Artrópodes , Besouros , Altitude , Animais , Artrópodes/fisiologia , Biodiversidade , Besouros/fisiologia , Ecossistema , Florestas
7.
BMC Biol ; 20(1): 190, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002826

RESUMO

BACKGROUND: Biological invasions are responsible for substantial environmental and economic losses. The red turpentine beetle (RTB), Dendroctonus valens LeConte, is an important invasive bark beetle from North America that has caused substantial tree mortality in China. The lack of a high-quality reference genome seriously limits deciphering the extent to which genetic adaptions resulted in a secondary pest becoming so destructive in its invaded area. RESULTS: Here, we present a 322.41 Mb chromosome-scale reference genome of RTB, of which 98% of assembled sequences are anchored onto fourteen linkage groups including the X chromosome with a N50 size of 24.36 Mb, which is significantly greater than other Coleoptera species. Repetitive sequences make up 45.22% of the genome, which is higher than four other Coleoptera species, i.e., Mountain pine beetle Dendroctonus ponderosae, red flour beetle Tribolium castaneum, blister beetle Hycleus cichorii, and Colorado potato beetle Leptinotarsa decemlineata. We identify rapidly expanded gene families and positively selected genes in RTB, which may be responsible for its rapid environmental adaptation. Population genetic structure of RTB was revealed by genome resequencing of geographic populations in native and invaded regions, suggesting substantial divergence of the North American population and illustrates the possible invasion and spread route in China. Selective sweep analysis highlighted the enhanced ability of Chinese populations in environmental adaptation. CONCLUSIONS: Overall, our high-quality reference genome represents an important resource for genomics study of invasive bark beetles, which will facilitate the functional study and decipher mechanism underlying invasion success of RTB by integrating the Pinus tabuliformis genome.


Assuntos
Besouros , Pinus , Animais , Cromossomos , Besouros/genética , Genômica , Metagenômica , Pinus/genética , Terebintina
8.
Plant Cell Environ ; 44(12): 3636-3651, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34612515

RESUMO

How carbohydrate reserves in conifers respond to drought and bark beetle attacks are poorly understood. We investigated changes in carbohydrate reserves and carbon-dependent diterpene defences in ponderosa pine trees that were experimentally subjected to two levels of drought stress (via root trenching) and two types of biotic challenge treatments (pheromone-induced bark beetle attacks or inoculations with crushed beetles that include beetle-associated fungi) for two consecutive years. Our results showed that trenching did not influence carbohydrates, whereas both biotic challenges reduced amounts of starch and sugars of trees. However, only the combined trenched-bark beetle attacked trees depleted carbohydrates and died during the first year of attacks. While live trees contained higher carbohydrates than dying trees, amounts of constitutive and induced diterpenes produced did not vary between live and beetle-attacked dying trees, respectively. Based on these results we propose that reallocation of carbohydrates to diterpenes during the early stages of beetle attacks is limited in drought-stricken trees, and that the combination of biotic and abiotic stress leads to tree death. The process of tree death is subsequently aggravated by beetle girdling of phloem, occlusion of vascular tissue by bark beetle-vectored fungi, and potential exploitation of host carbohydrates by bark beetle symbionts as nutrients.


Assuntos
Metabolismo dos Carboidratos , Secas , Cadeia Alimentar , Longevidade , Pinus ponderosa/fisiologia , Gorgulhos/fisiologia , Animais
9.
Insects ; 12(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073451

RESUMO

Bark beetles are among the most influential biotic agents in conifer forests, and forest management often focuses on bark beetle chemical communication for tree protection. Although acoustic communication occurs in many bark beetle species, we have yet to utilize acoustic communication for bark beetle control. Here, we describe the stridulatory organs and 'stress' chirps of the pinyon engraver, Ips confusus, a significant pest and mortality agent of pinyon pine in western North America. Only females possessed stridulatory organs and their stress chirps varied significantly in duration, pulses per chirp, and dominant frequency. We tested an array of acoustic-vibrational treatments into logs but were unable to disrupt male entry into logs or alter female-male interactions, female tunneling, and female oviposition. We found acoustic-vibrational treatments had little effect on I. confusus behavior and suggest further studies if acoustic methods are to be utilized for bark beetle control.

10.
Insects ; 12(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540901

RESUMO

Temperature is a key determining factor in the population dynamics of forest insects and their associated biota. Bark beetles, often considered key agents of change in forest ecosystems, are particularly affected by warming in their environment. Beetles associate with various phoretic mite species that have direct/indirect effects on beetle fitness and population dynamics, although there is limited knowledge of how temperature affects these communities. Here, we use a field reciprocal translocation experiment with the addition of a novel "warming" environment to represent future changes in local environment in two populations of a keystone bark beetle species (Dendroctonus ponderosae). We hypothesize that mite community abundances as carried by bark beetles are significantly altered when not in their native environments and when subjected to climate warming. We use multivariate generalized linear models based on species abundance data to show that mite community compositions significantly differ across different field climates; and that these patterns diverge between source populations, indicating local adaptation. Our study offers foundational information on the general effects of simulated climate-warming on the compositional shifts of common and abundant biotic associates of mountain pine beetles and may be used as a model system for other important insect-mite systems.

11.
Environ Entomol ; 50(2): 337-347, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33459773

RESUMO

Patterns of biodiversity along elevational gradients elucidate how climate shapes biological communities and help predict ecosystem responses to environmental change. Arid elevational gradients are particularly interesting because temperature limitations at high elevations and precipitation limitations at low elevations cause mid-elevation peaks in diversity. Ground-dwelling arthropods form highly diverse communities but few studies document elevational patterns of their full diversity. Here we investigate the elevational patterns of ground-dwelling arthropods in northern Arizona on the Colorado Plateau, an arid and understudied region in the United States. We sampled seven sites along an elevation gradient from 1,566 to 2,688 m corresponding to a difference of 6.5°C average annual temperature and 620 mm average annual precipitation. We captured 16,942 specimens comprising 169 species, mostly ants and beetles, and discovered a new ant species. First- and second-order elevation terms significantly correlated to multiple measures of arthropod α and ß diversity. Arthropod abundance, richness, and Shannon-Wiener diversity index peaked at mid-elevations, with functional groups (i.e., omnivores, predators, detritivores, and herbivores) showing similar patterns. Community composition varied significantly across the gradient, correlated with changes in elevation, and was driven by shifts of ants dominating low- to mid-elevations, to beetles dominating high-elevations. Dissimilarity among sites was driven by high species turnover with 59% of species exclusive to a single site, whereas nestedness among sites was low except at the lowest elevation site. High rates of turnover and elevation-dependent communities suggest that ground-dwelling arthropods are highly vulnerable to environmental change, particularly at lower elevations in arid regions.


Assuntos
Artrópodes , Altitude , Animais , Arizona , Biodiversidade , Colorado , Ecossistema
12.
J Chem Ecol ; 47(1): 10-27, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33405044

RESUMO

We investigated geographic variation in the semiochemistry of major disturbance agents of western North American pine forests, Dendroctonus brevicomis Le Conte and Dendroctonus barberi Hopkins (Coleoptera: Curculionidae: Scolytinae), species separated by the Great Basin in the USA that until recently were synonymous. At 15 sites in the western USA and northern Mexico, beetle populations were examined to determine (1) pheromone production by solitary, mining females, (2) male electroantennogram amplitudes in response to known semiochemicals for the genus, or (3) relative attractiveness of two female-produced pheromone components (endo- and exo-brevicomin) and two host odors (alpha-pinene and myrcene) to beetles in the field. Compared to female beetles collected east of the Great Basin (D. barberi), western females (D. brevicomis) produced a consistently higher proportion of, and male antenna were correspondingly more sensitive to, the exo- than the endo-isomer of brevicomin. With the exception of one sampling location (where no preference was observed), beetles west of the Great Basin were more attracted to exo- than endo- brevicomin trap lures, whereas eastern beetles displayed the reverse preference. In contrast, there was not a consistent difference between these populations regarding relative attraction or olfactory response to myrcene or alpha-pinene, although some geographic variability was evident. These data show that the semiochemical systems of D. brevicomis and D. barberi have diverged and corroborate genetic and morphological evidence that they are distinct, allopatric species.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Besouros/química , Especiação Genética , Feromônios/química , Monoterpenos Acíclicos/metabolismo , Alcenos/metabolismo , Animais , Comportamento Animal , Monoterpenos Bicíclicos/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/análise , Besouros/fisiologia , Feminino , Interações Hospedeiro-Parasita , Masculino , Feromônios/fisiologia , Filogeografia , Pinus ponderosa/metabolismo , Pinus ponderosa/parasitologia , Especificidade da Espécie
13.
PLoS One ; 15(8): e0238219, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32845929

RESUMO

Pinyon-juniper (PJ) woodlands have drastically changed over the last century with juniper encroaching into adjacent habitats and pinyon experiencing large-scale mortality events from drought. Changes in climate and forest composition may pose challenges for animal communities found in PJ woodlands, especially if animals specialize on tree species sensitive to drought. Here we test habitat specialization of ground-dwelling arthropod (GDA) communities underneath pinyon and juniper trees. We also investigate the role of climate and productivity gradients in structuring GDAs within PJ woodlands using two elevational gradients. We sampled 12,365 individuals comprising 115 taxa over two years. We found no evidence that GDAs differ under pinyon or juniper trees, save for a single species of beetle which preferred junipers. Climate and productivity, however, were strongly associated with GDA communities and appeared to drive differences between sites. Precipitation was strongly associated with arthropod richness, while differences in GDA composition were associated with environmental variables (precipitation, temperature, vapor pressure, and normalized difference vegetation index). These relationships varied among different arthropod taxa (e.g. ants and beetles) and community metrics (e.g. richness, abundance, and composition), with individual taxa also responding differently. Overall, our results suggest that GDAs are not dependent on tree type, but are strongly linked to primary productivity and climate, especially precipitation in PJ woodlands. This implies GDAs in PJ woodlands are more susceptible to changes in climate, especially at lower elevations where it is hot and dry, than changes in dominant vegetation. We discuss management implications and compare our findings to GDA relationships with vegetation in other systems.


Assuntos
Artrópodes/classificação , Juniperus/parasitologia , Pinus/parasitologia , Exsudatos de Plantas/metabolismo , Animais , Clima , Florestas , Árvores/parasitologia
14.
Ecol Evol ; 10(15): 8313-8322, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32788981

RESUMO

Terrestrial animal communities are largely shaped by vegetation and climate. With climate also shaping vegetation, can we attribute animal patterns solely to climate? Our study observes ant community changes along climatic gradients (i.e., elevational gradients) within different habitat types (i.e., open and forest) on the Colorado Plateau in the southwestern United States. We sampled ants and vegetation along two elevational gradients spanning 1,132 m with average annual temperature and precipitation differences of 5.7°C and 645mm, respectively. We used regression analyses and structural equation modeling to compare the explanatory powers and effect sizes of climate and vegetation variables on ants. Climate variables had the strongest correlations and the largest effect sizes on ant communities, while vegetation composition, richness, and primary productivity had relatively small effects. Precipitation was the strongest predictor for most ant community metrics. Ant richness and abundance had a negative relationship with precipitation in forested habitats, and positive in open habitats. Our results show strong direct climate effects on ants with little or no effects of vegetation composition or primary productivity, but contrasting patterns between vegetation type (i.e., forested vs. open) with precipitation. This indicates vegetation structure can modulate climate responses of ant communities. Our study demonstrates climate-animal relationships may vary among vegetation types which can impact both findings from elevational studies and how communities will react to changes in climate.

15.
J Chem Ecol ; 45(10): 888-900, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31493165

RESUMO

Interactions between water stress and induced defenses and their role in tree mortality due to bark beetles are poorly understood. We performed a factorial experiment on 48 mature ponderosa pines (Pinus ponderosa) in northern Arizona over three years that manipulated a) tree water stress by cutting roots and removing snow; b) bark beetle attacks by using pheromone lures; and c) phloem exposure to biota vectored by bark beetles by inoculating with dead beetles. Tree responses included resin flow from stem wounds, phloem composition of mono- and sesqui-terpenes, xylem water potential, leaf gas exchange, and survival. Phloem contained 21 mono- and sesqui-terpenes, which were dominated by (+)-α-pinene, (-)-limonene, and δ-3-carene. Bark beetle attacks (mostly Dendroctonus brevicomis) and biota carried by beetles induced a general increase in concentration of phloem mono- and sesqui-terpenes, whereas water stress did not. Bark beetle attacks induced an increase in resin flow for unstressed trees but not water-stressed trees. Mortality was highest for beetle-attacked water-stressed trees. Death of beetle-attacked trees was preceded by low resin flow, symptoms of water stress (low xylem water potential, leaf gas exchange), and an ephemeral increase in concentrations of mono- and sesqui-terpenes compared to surviving trees. These results show a) that ponderosa pine can undergo induction of both resin flow and phloem terpenes in response to bark beetle attack, and that the former is more constrained by water stress; b) experimental evidence that water stress predisposes ponderosa pines to mortality from bark beetles.


Assuntos
Besouros/fisiologia , Secas , Interações Hospedeiro-Parasita/efeitos dos fármacos , Pinus ponderosa/química , Terpenos/farmacologia , Animais , Cromatografia Gasosa , Pinus ponderosa/metabolismo , Casca de Planta/química , Casca de Planta/metabolismo , Resinas Vegetais/química , Resinas Vegetais/metabolismo , Estações do Ano , Terpenos/análise , Terpenos/química
16.
Trends Ecol Evol ; 34(10): 914-924, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31262532

RESUMO

Tree-killing bark beetles are the most economically important insects in conifer forests worldwide. However, despite >200 years of research, the drivers of population eruptions and crashes are still not fully understood and the existing knowledge is thus insufficient to face the challenges posed by the Anthropocene. We critically analyze potential biotic and abiotic drivers of population dynamics of an exemplary species, the European spruce bark beetle (ESBB) (Ips typographus) and present a multivariate approach that integrates the many drivers governing this bark beetle system. We call for hypothesis-driven, large-scale collaborative research efforts to improve our understanding of the population dynamics of this and other bark beetle pests. Our approach can serve as a blueprint for tackling other eruptive forest insects.


Assuntos
Besouros , Picea , Animais , Casca de Planta , Dinâmica Populacional , Árvores
17.
Naturwissenschaften ; 106(5-6): 17, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31020391

RESUMO

Light-based stimuli elicited acoustic responses in male Hylesinus aculeatus Say (Curculionidae: Scolytinae: Hylesinina) instantaneously, with 100% reliability. Stridulations were elicited with a white light beam in a dark environment and recorded with an ultrasonic microphone. Acoustic responses were consistent, and, when compared with sounds produced under stressful conditions (i.e. physical stimulation), no significant differences were found. Hylesinus aculeatus possess an elytro-tergal stridulatory organ and acoustic communication is only present in males. This is also the first report of acoustic communication for this species. Instantaneous light-elicited acoustic communication has potential applications in the development of electronic traps and real-time acoustic detection and identification of beetles, border biosecurity, and noise-reduction in acoustic data collection.


Assuntos
Luz , Vocalização Animal/fisiologia , Gorgulhos/fisiologia , Animais , Masculino
18.
Exp Appl Acarol ; 77(2): 117-131, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30810852

RESUMO

The phoretic mite communities of prominent bark beetle pests associated with pine stands of southern Portugal were sampled to determine whether they vary across bark beetle species and stand type. Bark beetles were sampled for mites from two primary (aggressive) bark beetle species (Ips sexdentatus and Orthotomicus erosus) and the most common secondary species (Hylurgus ligniperda) in maritime pine (Pinus pinaster) and stone pine (Pinus pinea) in the Setúbal province of Portugal. Twelve mite species, spanning diverse ecological roles, are found associated with these bark beetle systems. The relative abundances of the 12 species that make up the phoretic mite communities of maritime and stone pine varied significantly between host beetle species as well as between stand type, indicating that the phoretic host and dominant tree type are important drivers of mite community composition. The functional roles of these mites are outlined and their ecological significance in pine forest ecosystems is discussed.


Assuntos
Florestas , Ácaros/fisiologia , Simbiose , Gorgulhos/fisiologia , Animais , Pinus/crescimento & desenvolvimento , Portugal , Árvores/crescimento & desenvolvimento
19.
Virus Res ; 256: 17-20, 2018 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-30059700

RESUMO

Genomoviruses are circular single-stranded DNA viruses (∼2 kb in size) classified into nine genera, they are highly diverse and have been identified in a variety of samples ranging from fungi to animal sera. Here we identify five genomoviruses belonging to the Gemycircularvirus genus and one to the Gemykibivirus genus from mountain pine beetle and western pine beetle sampled in Arizona. Collectively these six viral genomes share <77% genome-wide pairwise identity and hence represent six new species of genomoviruses. Four of the gemycircularviruses from the mountain pine beetles are recombinant, with one having a recombinant region that spans the entire capsid protein. Pine beetles have a symbiotic relationship with certain tree pathogenic fungi. Therefore given that Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1, a gemycircularvirus, induces hypovirulence in the plant pathogenic fungus Sclerotinia sclerotiorum and infects the mycophagous insect Lycoriella ingenua, it is possible that the six genomoviruses identified here may be directly associated with the pine beetle fungal symbionts and/or with the insects themselves.


Assuntos
Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , Genoma Viral , Nematóceros/virologia , Animais , Arizona , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/virologia , Análise por Conglomerados , Vírus de DNA/classificação , Nematóceros/microbiologia , Filogenia , Recombinação Genética , Homologia de Sequência , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...