Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 5(7): 1800416, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30027062

RESUMO

Nanoscale metamaterials exhibit extraordinary optical properties and are proposed for various technological applications. Here, a new class of novel nanoscale two-phase hybrid metamaterials is achieved by combining two major classes of traditional plasmonic materials, metals (e.g., Au) and transition metal nitrides (e.g., TaN, TiN, and ZrN) in an epitaxial thin film form via the vertically aligned nanocomposite platform. By properly controlling the nucleation of the two phases, the nanoscale artificial plasmonic lattices (APLs) consisting of highly ordered hexagonal close packed Au nanopillars in a TaN matrix are demonstrated. More specifically, uniform Au nanopillars with an average diameter of 3 nm are embedded in epitaxial TaN platform and thus form highly 3D ordered APL nanoscale metamaterials. Novel optical properties include highly anisotropic reflectance, obvious nonlinear optical properties indicating inversion symmetry breaking of the hybrid material, large permittivity tuning and negative permittivity response over a broad wavelength regime, and superior mechanical strength and ductility. The study demonstrates the novelty of the new hybrid plasmonic scheme with great potentials in versatile material selection, and, tunable APL spacing and pillar dimension, all important steps toward future designable hybrid plasmonic materials.

2.
Nano Lett ; 16(6): 3936-43, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27186652

RESUMO

Metamaterials made of nanoscale inclusions or artificial unit cells exhibit exotic optical properties that do not exist in natural materials. Promising applications, such as super-resolution imaging, cloaking, hyperbolic propagation, and ultrafast phase velocities have been demonstrated based on mostly micrometer-scale metamaterials and few nanoscale metamaterials. To date, most metamaterials are created using costly and tedious fabrication techniques with limited paths toward reliable large-scale fabrication. In this work, we demonstrate the one-step direct growth of self-assembled epitaxial metal-oxide nanocomposites as a drastically different approach to fabricating large-area nanostructured metamaterials. Using pulsed laser deposition, we fabricated nanocomposite films with vertically aligned gold (Au) nanopillars (∼20 nm in diameter) embedded in various oxide matrices with high epitaxial quality. Strong, broad absorption features in the measured absorbance spectrum are clear signatures of plasmon resonances of Au nanopillars. By tuning their densities on selected substrates, anisotropic optical properties are demonstrated via angular dependent and polarization resolved reflectivity measurements and reproduced by full-wave simulations and effective medium theory. Our model predicts exotic properties, such as zero permittivity responses and topological transitions. Our studies suggest that these self-assembled metal-oxide nanostructures provide an exciting new material platform to control and enhance optical response at nanometer scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...