Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 25(1): 408-420, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27908751

RESUMO

Low molecular weight peptidomimetic inhibitors with hydrophobic pocket binding properties and moderate fusion inhibitory activity against HIV-1 gp41-mediated cell fusion were elaborated by increasing the available surface area for interacting with the heptad repeat-1 (HR1) coiled coil on gp41. Two types of modifications were tested: 1) increasing the overall hydrophobicity of the molecules with an extension that could interact in the HR1 groove, and 2) forming symmetrical dimers with two peptidomimetic motifs that could potentially interact simultaneously in two hydrophobic pockets on the HR1 trimer. The latter approach was more successful, yielding 40-60times improved potency against HIV fusion over the monomers. Biophysical characterization, including equilibrium binding studies by fluorescence and kinetic analysis by Surface Plasmon Resonance, revealed that inhibitor potency was better correlated to off-rates than to binding affinity. Binding and kinetic data could be fit to a model of bidentate interaction of dimers with the HR1 trimer as an explanation for the slow off-rate, albeit with minimal cooperativity due to the highly flexible ligand structures. The strong cooperativity observed in fusion inhibitory activity of the dimers implied accentuated potency due to the transient nature of the targeted intermediate. Optimization of monomer, dimer or higher order structures has the potential to lead to highly potent non-peptide fusion inhibitors by targeting multiple hydrophobic pockets.


Assuntos
Proteína gp41 do Envelope de HIV/antagonistas & inibidores , Inibidores da Fusão de HIV/farmacologia , Peptidomiméticos/farmacologia , Sítios de Ligação , Fusão Celular , Inibidores da Fusão de HIV/síntese química , Células HeLa , Humanos , Cinética , Modelos Químicos , Peptidomiméticos/síntese química
2.
Antiviral Res ; 136: 51-59, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27825797

RESUMO

Camptothecin (CPT) is a natural product discovered to be active against various cancers through its ability to inhibit Topoisomerase I (TOP1). CPT analogs also have anti-HIV-1 (HIV) activity that was previously shown to be independent of TOP1 inhibition. We show that a cancer inactive CPT analog (O2-16) inhibits HIV infection by disrupting multimerization of the HIV protein Vif. Antiviral activity depended on the expression of the cellular viral restriction factor APOBEC3G (A3G) that, in the absence of functional Vif, has the ability to hypermutate HIV proviral DNA during reverse transcription. Our studies demonstrate that O2-16 has low cytotoxicity and inhibits Vif-dependent A3G degradation, enabling A3G packaging into HIV viral particles that results in A3G signature hypermutations in viral genomes. This antiviral activity was A3G-dependent and broadly neutralizing against sixteen HIV clinical isolates from groups M (subtypes A-G), N, and O as well as seven single and multi-drug resistant strains of HIV. Molecular modeling predicted binding near the PPLP motif crucial for Vif multimerization and activity. O2-16 also was active in blocking Vif degradation of APOBEC3F (A3F). We propose that CPT analogs not active against TOP1 have novel therapeutic potential as Vif antagonists that enable A3G-dependent hypermutation of HIV.


Assuntos
Desaminase APOBEC-3G/metabolismo , Camptotecina/análogos & derivados , DNA Topoisomerases Tipo I/metabolismo , HIV-1/efeitos dos fármacos , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Desaminase APOBEC-3G/genética , Camptotecina/farmacologia , Linhagem Celular , Farmacorresistência Viral/genética , Genoma Viral , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , Vírion/metabolismo , Replicação Viral , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química
3.
J Med Chem ; 57(12): 5270-81, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24856833

RESUMO

We previously described indole-containing compounds with the potential to inhibit HIV-1 fusion by targeting the hydrophobic pocket of transmembrane glycoprotein gp41. Here we report optimization and structure-activity relationship studies on the basic scaffold, defining the role of shape, contact surface area, and molecular properties. Thirty new compounds were evaluated in binding, cell-cell fusion, and viral replication assays. Below a 1 µM threshold, correlation between binding and biological activity was diminished, indicating an amphipathic requirement for activity in cells. The most active inhibitor 6j exhibited 0.6 µM binding affinity and 0.2 µM EC50 against cell-cell fusion and live virus replication and was active against T20 resistant strains. Twenty-two compounds with the same connectivity displayed a consensus pose in docking calculations, with rank order matching the biological activity. The work provides insight into requirements for small molecule inhibition of HIV-1 fusion and demonstrates a potent low molecular weight fusion inhibitor.


Assuntos
Benzoatos/química , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/química , HIV-1/efeitos dos fármacos , Indóis/química , Benzoatos/síntese química , Benzoatos/farmacologia , Fusão Celular , Linhagem Celular , Farmacorresistência Viral , Enfuvirtida , Proteína gp41 do Envelope de HIV/farmacologia , Inibidores da Fusão de HIV/síntese química , Inibidores da Fusão de HIV/farmacologia , HIV-1/fisiologia , Humanos , Indóis/síntese química , Indóis/farmacologia , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/farmacologia , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
4.
Antiviral Res ; 98(3): 365-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23602851

RESUMO

Research efforts on the human immunodeficiency virus (HIV) integrase have resulted in two approved drugs. However, co-infection of HIV with Mycobacterium tuberculosis and other microbial and viral agents has introduced added complications to this pandemic, requiring favorable drug-drug interaction profiles for antiviral therapeutics targeting HIV. Cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) are pivotal determining factors in the occurrence of adverse drug-drug interactions. For this reason, it is important that anti-HIV agents, such as integrase inhibitors, possess favorable profiles with respect to CYP and UGT. We have discovered a novel HIV integrase inhibitor (compound 1) that exhibits low nM antiviral activity against a diverse set of HIV-1 isolates, and against HIV-2 and the simian immunodeficiency virus (SIV). Compound 1 displays low in vitro cytotoxicity and its resistance and related drug susceptibility profiles are favorable. Data from in vitro studies revealed that compound 1 was not a substrate for UGT isoforms and that it was not an inhibitor or activator of key CYP isozymes.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Inibidores de Integrase de HIV/síntese química , HIV-1/efeitos dos fármacos , Piridinas/síntese química , Pirrolidinas/síntese química , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral , Integrase de HIV/genética , Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/farmacologia , HIV-1/enzimologia , HIV-2/efeitos dos fármacos , HIV-2/metabolismo , Células HeLa , Humanos , Isoenzimas/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Mutação , Piridinas/farmacologia , Pirrolidinas/farmacologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/metabolismo
5.
Bioorg Med Chem Lett ; 19(24): 6893-7, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19896372

RESUMO

We describe the development of a new type of scaffold to target RNA structures. Multivalent binding oligomers (MBOs) are molecules in which multiple sidechains extend from a polyamine backbone such that favorable RNA binding occurs. We have used this strategy to develop MBO-based inhibitors to prevent the association of a protein-RNA complex, Tat-TAR, that is essential for HIV replication. In vitro binding assays combined with model cell-based assays demonstrate that the optimal MBOs inhibit Tat-TAR binding at low micromolar concentrations. Antiviral studies are also consistent with the in vitro and cell-based assays. MBOs provide a framework for the development of future RNA-targeting molecules.


Assuntos
Fármacos Anti-HIV/química , Repetição Terminal Longa de HIV/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Fármacos Anti-HIV/farmacologia , Humanos , Conformação de Ácido Nucleico , RNA Viral/efeitos dos fármacos , RNA Viral/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
6.
Antiviral Res ; 66(2-3): 165-8, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15911032

RESUMO

GB virus B (GBV-B) is the most closely related virus to the hepatitis C virus (HCV) and is an attractive surrogate model system for HCV drug development efforts. Unfortunately, GBV-B can only be grown in the primary hepatocytes of certain non-human primates. We grew GBV-B in tamarins and marmosets and then used this virus in the absence and presence of lipofection reagents to try to infect 20 different cell lines including human primary hepatocytes and marmoset primary hepatocytes. GBV-B only replicated in marmoset primary hepatocytes. We isolated primary hepatocytes from GBV-B-positive and negative tamarins and marmosets and tried to immortalize the cells using SV40 large T-antigen or cell fusion. GBV-B stable cell lines were constructed in Huh7 and HepG2 cell lines, but there was no evidence for viral replication or a response to antiviral agents in these lines. Infectious full-length GBV-B RNA could be transfected into Vero, Huh7 and HepG2 at high efficiency, however there was no evidence for GBV-B replication or a response to antiviral agents. None of these approaches were successful and an in vitro model of GBV-B replication using immortalized cell lines was not produced. We hypothesize that these immortalized cell lines lack liver-specific factors that are required for GBV-B replication.


Assuntos
Vírus GB B/fisiologia , Replicação Viral , Animais , Linhagem Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...