Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 21(6): 725-742, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37455407

RESUMO

Studying the response and recovery of marine microbial communities during mass extinction events provides an evolutionary window through which to understand the adaptation and resilience of the marine ecosystem in the face of significant environmental disturbances. The goal of this study is to reconstruct changes in the marine microbial community structure through the Late Devonian Frasnian-Famennian (F-F) transition. We performed a multiproxy investigation on a drill core of the Upper Devonian New Albany Shale from the Illinois Basin (western Kentucky, USA). Aryl isoprenoids show green sulfur bacteria expansion and associated photic zone euxinia (PZE) enhancement during the F-F interval. These changes can be attributed to augmented terrigenous influxes, as recorded collectively by the long-chain/short-chain normal alkane ratio, carbon preference index, C30 moretane/C30 hopane, and diahopane index. Hopane/sterane ratios reveal a more pronounced dominance of eukaryotic over prokaryotic production during the mass extinction interval. Sterane distributions indicate that the microalgal community was primarily composed of green algae clades, and their dominance became more pronounced during the F-F interval and continued to rise in the subsequent periods. The 2α-methylhopane index values do not show an evident shift during the mass extinction interval, whereas the 3ß-methylhopane index values record a greater abundance of methanotrophic bacteria during the extinction interval, suggesting enhanced methane cycling due to intensified oxygen depletion. Overall, the Illinois Basin during the F-F extinction experienced heightened algal productivity due to intensified terrigenous influxes, exhibiting similarities to contemporary coastal oceans that are currently undergoing globalized cultural eutrophication. The observed microbial community shifts associated with the F-F environmental disturbances were largely restricted to the extinction interval, which suggests a relatively stable, resilient marine microbial ecosystem during the Late Devonian.

2.
Sci Rep ; 9(1): 7581, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110279

RESUMO

The global dispersal of forests and soils has been proposed as a cause for the Late Devonian mass extinctions of marine organisms, but detailed spatiotemporal records of forests and soils at that time remain lacking. We present data from microscopic and geochemical analyses of the Upper Devonian Chattanooga Shale (Famennian Stage). Plant residues (microfossils, vitrinite and inertinite) and biomarkers derived from terrestrial plants and wildfire occur throughout the stratigraphic section, suggesting widespread forest in the southern Appalachian Basin, a region with no macro plant fossil record during the Famennian. Inorganic geochemical results, as shown by increasing values of SiO2/Al2O3, Ti/Al, Zr/Al, and the Chemical Index of Alteration (CIA) upon time sequence, suggest enhanced continental weathering that may be attributed to the invasion of barren lands by rooted land plants. Our geochemical data collectively provide the oldest evidence of the influences of land plants from the southernmost Appalachian Basin. Our synthesis of vascular plant fossil record shows a more rapid process of afforestation and pedogenesis across south-central Euramerica during the Frasnian and Famennian than previously documented. Together, these results lead us to propose a new hypothesis that global floral dispersal had progressed southward along the Acadian landmass rapidly during the Late Devonian.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...