Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 9: 797076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957083

RESUMO

Research on pathogenic organisms is crucial for medical, biological and agricultural developments. However, biological agents as well as associated knowledge and techniques, can also be misused, for example for the development of biological weapons. Potential malicious use of well-intended research, referred to as "dual-use research", poses a threat to public health and the environment. There are various international resources providing frameworks to assess dual-use potential of the research concerned. However, concrete instructions for researchers on how to perform a dual-use risk assessment is largely lacking. The international need for practical dual-use monitoring and risk assessment instructions, in addition to the need to raise awareness among scientists about potential dual-use aspects of their research has been identified over the last years by the Netherlands Biosecurity Office, through consulting national and international biorisk stakeholders. We identified that Biorisk Management Advisors and researchers need a practical tool to facilitate a dual-use assessment on their specific research. Therefore, the Netherlands Biosecurity Office developed a web-based Dual-Use Quickscan (www.dualusequickscan.com), that can be used periodically by researchers working with microorganisms to assess potential dual-use risks of their research by answering a set of fifteen yes/no questions. The questions for the tool were extracted from existing international open resources, and categorized into three themes: characteristics of the biological agent, knowledge and technology about the biological agent, and consequences of misuse. The results of the Quickscan provide the researcher with an indication of the dual-use potential of the research and can be used as a basis for further discussions with a Biorisk Management Advisor. The Dual-Use Quickscan can be embedded in a broader system of biosafety and biosecurity that includes dual-use monitoring and awareness within organizations. Increased international attention to examine pathogens with pandemic potential has been enhanced by the current COVID-19 pandemic, hence monitoring of dual-use potential urgently needs to be encouraged.

3.
J Insect Physiol ; 52(6): 614-24, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16620868

RESUMO

Plants genetically modified to express Galanthus nivalis agglutinin (GNA) have been found to confer partial resistance to homopteran pests. Laboratory experiments were conducted to investigate direct effects of GNA on larvae of three species of aphid predators that differ in their feeding and digestive physiology, i.e. Chrysoperla carnea, Adalia bipunctata and Coccinella septempunctata. Longevity of all three predator species was directly affected by GNA, when they were fed a sucrose solution containing 1% GNA. However, a difference in sensitivity towards GNA was observed when comparing the first and last larval stage of the three species. In vitro studies revealed that gut enzymes from none of the three species were able to break down GNA. In vivo feed-chase studies demonstrated accumulation of GNA in the larvae. After the larvae had been transferred to a diet devoid of GNA, the protein stayed present in the body of C. carnea, but decreased over time in both ladybirds. Binding studies showed that GNA binds to glycoproteins that can be found in the guts of larvae of all three predator species. Immunoassay by Western blotting of haemolymph samples only occasionally showed the presence of GNA. Fluorescence microscopy confirmed GNA accumulation in the midgut of C. carnea larvae. Implications of these findings for non-target risk assessment of GNA-transgenic crops are discussed.


Assuntos
Besouros/efeitos dos fármacos , Galanthus/química , Inseticidas/análise , Larva/efeitos dos fármacos , Lectinas de Ligação a Manose/farmacologia , Lectinas de Plantas/farmacologia , Animais , Afídeos , Comportamento Alimentar/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Hemolinfa/química , Imuno-Histoquímica , Proteínas de Insetos/efeitos dos fármacos , Insetos/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Lectinas de Ligação a Manose/farmacocinética , Microscopia de Fluorescência , Controle Biológico de Vetores , Lectinas de Plantas/farmacocinética , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...