Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Healthcare (Basel) ; 9(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916085

RESUMO

This study investigated immunological changes during an alcohol hangover, and the possible difference between hangover-resistant and hangover-sensitive drinkers in terms of immune reactivity. Using a semi-naturalistic design, N = 36 healthy social drinkers (18 to 30 years old) provided saliva samples on a control day (after drinking no alcohol) and on a post-alcohol day. Hangover severity was rated directly after saliva collection. Cytokine concentrations, interleukin (IL)-1ß, IL-6, IL-8, IL-10 and tumor necrosis factor (TNF)-α, and hangover severity were compared between both test days and between hangover-sensitive and -resistant drinkers. Data from N = 35 drinkers (17 hangover-sensitive and 18 hangover-resistant) were included in the statistical analyses. Relative to the control day, there were significant increases in saliva IL-6 and IL-10 concentrations on the post-alcohol day. No significant differences in cytokine concentrations were found between hangover-sensitive and hangover-resistant drinkers, nor did any change in cytokine concentration correlate significantly with hangover severity. In line with previous controlled studies assessing cytokines in blood, the current naturalistic study using saliva samples also demonstrated that the immune system responds to high-level alcohol intake. However, further research is warranted, as, in contrast to previous findings in blood samples, changes in saliva cytokine concentrations did not differ significantly between hangover-sensitive and hangover-resistant drinkers, nor did they correlate significantly with hangover severity.

2.
J Clin Med ; 9(1)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936502

RESUMO

The 2010 Alcohol Hangover Research Group consensus paper defined a cutoff blood alcohol concentration (BAC) of 0.11% as a toxicological threshold indicating that sufficient alcohol had been consumed to develop a hangover. The cutoff was based on previous research and applied mostly in studies comprising student samples. Previously, we showed that sensitivity to hangovers depends on (estimated) BAC during acute intoxication, with a greater percentage of drinkers reporting hangovers at higher BAC levels. However, a substantial number of participants also reported hangovers at comparatively lower BAC levels. This calls the suitability of the 0.11% threshold into question. Recent research has shown that subjective intoxication, i.e., the level of severity of reported drunkenness, and not BAC, is the most important determinant of hangover severity. Non-student samples often have a much lower alcohol intake compared to student samples, and overall BACs often remain below 0.11%. Despite these lower BACs, many non-student participants report having a hangover, especially when their subjective intoxication levels are high. This may be the case when alcohol consumption on the drinking occasion that results in a hangover significantly exceeds their "normal" drinking level, irrespective of whether they meet the 0.11% threshold in any of these conditions. Whereas consumers may have relative tolerance to the adverse effects at their "regular" drinking level, considerably higher alcohol intake-irrespective of the absolute amount-may consequentially result in a next-day hangover. Taken together, these findings suggest that the 0.11% threshold value as a criterion for having a hangover should be abandoned.

3.
Hum Psychopharmacol ; 32(5)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28685869

RESUMO

INTRODUCTION: The aim of this study was to investigate the usefulness of ethyl glucuronide (EtG) and ethyl sulfate (EtS) as biomarkers of the hangover state. METHODS: Thirty-sixhealthy social drinkers participated in this study, being of naturalistic design. Eighteen participants experience regular hangovers (the hangover group), whereas the other 18 claim to not experience a hangover (the hangover-immune group). On a control day (alcohol-free) day and a post-alcohol day, urine EtG and EtS concentrations were determined and hangover severity assessed. RESULTS: Urinary EtG and EtS concentrations were significantly increased on post-alcohol day compared to the control day (p = .0001). Both EtG and EtS concentrations did not significantly correlate with the overall hangover score, nor with the estimated peak blood alcohol concentrations and number of alcoholic drinks. EtG correlated significantly only with the individual hangover symptom "headache" (p = .033; r = .403). No significant correlations were found with the EtG to EtS ratio. EtG and EtS concentrations significantly correlated with urine ethanol concentrations. CONCLUSIONS: Although urine EtG and EtS concentration did not significantly correlate to estimated peak blood alcohol concentrations or the number of alcoholic drinks consumed, a significant correlation was found with urine ethanol concentration. However, urine EtG and EtS concentrations did not significantly correlate with overall hangover severity.


Assuntos
Transtornos Relacionados ao Uso de Álcool/urina , Glucuronatos/urina , Síndrome de Abstinência a Substâncias/urina , Ésteres do Ácido Sulfúrico/urina , Adolescente , Adulto , Consumo de Bebidas Alcoólicas/sangue , Consumo de Bebidas Alcoólicas/urina , Transtornos Relacionados ao Uso de Álcool/sangue , Biomarcadores/urina , Concentração Alcoólica no Sangue , Feminino , Humanos , Masculino , Síndrome de Abstinência a Substâncias/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...