Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(19): 34385-34395, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242451

RESUMO

Recording of transient absorption microscopy images requires fast detection of minute optical density changes, which is typically achieved with high-repetition-rate laser sources and lock-in detection. Here, we present a highly flexible and cost-efficient detection scheme based on a conventional photodiode and an USB oscilloscope with MHz bandwidth, that deviates from the commonly used lock-in setup and achieves benchmark sensitivity. Our scheme combines shot-to-shot evaluation of pump-probe and probe-only measurements, a home-built photodetector circuit optimized for low pulse energies applying low-pass amplification, and a custom evaluation algorithm based on Fourier transformation. Advantages of this approach include abilities to simultaneously monitor multiple pulse modulation frequencies, implement the detection of additional pulse sequences (e.g., pump-only), and expand to multiple parallel detection channels for wavelength-dispersive probing. With a 40 kHz repetition-rate laser system powering two non-collinear optical parametric amplifiers for wide tuneability, we find that laser pulse fluctuations limit the sensitivity of the setup, while the detection scheme has negligible contribution. We demonstrate the 2-D imaging performance of our transient absorption microscope with studies on micro-crystalline molecular thin films.

2.
Nanoscale Adv ; 4(17): 3566-3572, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36134347

RESUMO

We demonstrate that the photoconductance of colloidal PbS/MAPbI3 quantum dots in nanoscale gold electrode gaps shows a consistent power law dependence of the photocurrent on the light intensity with an exponent slightly below 0.7. The gap sizes are between 25 and 800 nm and by scanning photocurrent microscopy we evidence the strong localization and high reproducibility of photocurrent generation. We probe different flat-faced and pointed electrodes for excitation light in the red and near infrared spectral range and laser irradiances from 10-2 to 102 W cm-2. Our material combination provides practically identical photocurrent response for a wide range of gap sizes and geometries, highlighting its generic potential for nanoscale light coupling and detection.

3.
ACS Photonics ; 5(12): 4823-4827, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30591924

RESUMO

We show that the plasmon modes of vertically stacked Ag-SiO2-Ag nanodisks can be understood and classified as hybridized surface and edge modes. We describe their universal dispersion relations and demonstrate that coupling-induced spectral shifts are significantly stronger for surface modes than for edge modes. The experimental data correspond well to numerical simulations. In addition, we estimate optical intensity enhancements of the stacked nanodisks in the range of 1000.

4.
ACS Photonics ; 5(3): 861-866, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29607350

RESUMO

Due to a vanishing dipole moment, radial breathing modes in small flat plasmonic nanoparticles do not couple to light and have to be probed with a near-field source, as in electron energy loss spectroscopy (EELS). With increasing particle size, retardation gives rise to light coupling, enabling probing breathing modes optically or by cathodoluminescence (CL). Here, we investigate single silver nanodisks with diameters of 150-500 nm by EELS and CL in an electron microscope and quantify the EELS/CL ratio, which corresponds to the ratio of full to radiative damping of the breathing mode. For the investigated diameter range, we find the CL signal to increase by about 1 order of magnitude, in agreement with numerical simulations. Due to reciprocity, our findings corroborate former optical experiments and enable a quantitative understanding of the light coupling of dark plasmonic modes.

5.
Nano Lett ; 17(11): 6773-6777, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28981295

RESUMO

Plasmonic gap modes provide the ultimate confinement of optical fields. Demanding high spatial resolution, the direct imaging of these modes was only recently achieved by electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). However, conventional 2D STEM-EELS is only sensitive to components of the photonic local density of states (LDOS) parallel to the electron trajectory. It is thus insensitive to specific gap modes, a restriction that was lifted with the introduction of tomographic 3D EELS imaging. Here, we show that by 3D EELS tomography the gap mode LDOS of a vertically stacked nanotriangle dimer can be fully imaged. Besides probing the complete mode spectrum, we demonstrate that the tomographic approach allows disentangling the signal contributions from the two nanotriangles that superimpose in a single measurement with a fixed electron trajectory. Generally, vertically coupled nanoparticles enable the tailoring of 3D plasmonic fields, and their full characterization will thus aid the development of complex nanophotonic devices.

6.
Nanoscale ; 8(36): 16449-54, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27603414

RESUMO

We probe the local sensitivity of an optically excited plasmonic nanoparticle by changing the local dielectric environment through a scanning glass fiber tip. Recording the particle plasmon scattering spectrum for each tip position allows us to observe spectral resonance shifts concurrent with changes in scattering intensity and plasmon damping. For the tip-induced spectral shifts we find the strongest sensitivity at the particle edges, in accordance with the spatial plasmonic field profile. In contrast, the strongest sensitivity occurs at the center of the particle if the scattering intensity is probed at the short wavelength slope of the plasmon resonance instead of the resonance position. This bears important implications for plasmonic sensing, in particular when done at a single light wavelength.

7.
Nano Lett ; 16(8): 5152-5, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27427962

RESUMO

The coupling of plasmonic nanoparticles can strongly modify their optical properties. Here, we show that the coupling of the edges within a single rectangular particle leads to mode splitting and the formation of bonding and antibonding edge modes. We are able to unambiguously designate the modes due to the high spatial resolution of electron microscopy-based electron energy loss spectroscopy and the comparison with numerical simulations. Our results provide simple guidelines for the interpretation and the design of plasmonic mode spectra.

8.
Opt Lett ; 40(23): 5670-3, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26625078

RESUMO

By focusing propagating surface plasmons, electromagnetic energy can be delivered to nanoscale volumes. In this context, we employ electron energy loss spectroscopy in a scanning transmission electron microscope to characterize the full plasmonic mode spectrum of a silver thin film tapered to a sharp tip. We show that the plasmon modes can be ordered in film and edge modes and corroborate our assignment through supplementary numerical simulations. In particular, we find that the focused plasmon field at the taper tip is fueled by edge modes.

9.
Opt Express ; 23(8): 10293-300, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25969071

RESUMO

We experimentally investigate the local refractive index sensitivity of plasmonic gold nanodisks by applying small polymer dots to selected disk sites by means of two-step lithography. Measured sensitivity profiles obtained from tracking the polymer-induced spectral shift of the plasmon modes are in excellent agreement with numerical simulation of both spectral sensitivity and the electric near field of the nanodisks. Based on the nanodisk sensitivity profile we tailor a sensitive and spatially uniform plasmonic sensor by capping the disk with a dielectric layer, thus restricting analyte access to the disk rim.

10.
Nat Commun ; 5: 3604, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24717682

RESUMO

Dimensionality has a significant impact on the optical properties of solid-state nanostructures. For example, dimensionality-dependent carrier confinement in semiconductors leads to the formation of quantum wells, quantum wires and quantum dots. While semiconductor properties are governed by excitonic effects, the optical response of metal nanostructures is dominated by surface plasmons. Here we find that, in contrast to excitonic systems, the mode dispersions in plasmonic structures of different dimensionality are related by simple scaling rules. Employing electron energy loss spectroscopy, we show that the modes of silver nanodisks can be scaled to the surface and edge modes of extended silver thin films. We thereby introduce a general and intuitive ordering scheme for plasmonic excitations with edge and surface modes as the elementary building blocks.

11.
Nano Lett ; 13(9): 4257-62, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23968490

RESUMO

The coupling of optical emitters with a nanostructured environment is at the heart of nano- and quantum optics. We control this coupling by the lithographic positioning of a few (1-3) quantum dots (QDs) along plasmonic silver nanowires with nanoscale resolution. The fluorescence emission from the QD-nanowire systems is probed spectroscopically, by microscopic imaging and decay time measurements. We find that the plasmonic modes can strongly modulate the fluorescence emission. For a given QD position, the local plasmon field dictates the coupling efficiency, and thus the relative weight of free space radiation and emission into plasmon modes. Simulations performed with a generic few-level model give very good agreement with experiment. Our data imply that the 2D degenerate emission dipole orientation of the QD can be forced to predominantly emit to one polarization component dictated by the nanowire modes.

12.
Nanotechnology ; 24(30): 305501, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23818049

RESUMO

The development of simple gas sensing concepts is still of great interest for science and technology. The demands on an ideal device would be a single-step fabrication method providing a device which is sensitive, analyte-selective, quantitative, and reversible without special operating/reformation conditions such as high temperatures or special environments. In this study we demonstrate a new gas sensing concept based on a nanosized PtC metal-matrix system fabricated in a single step via focused electron beam induced deposition (FEBID). The sensors react selectively on polar H2O molecules quantitatively and reversibly without any special reformation conditions after detection events, whereas non-polar species (O2, CO2, N2) produce no response. The key elements are isolated Pt nanograins (2-3 nm) which are embedded in a dielectric carbon matrix. The electrical transport in such materials is based on tunneling effects in the correlated variable range hopping regime, where the dielectric carbon matrix screens the electric field between the particles, which governs the final conductivity. The specific change of these dielectric properties by the physisorption of polar gas molecules (H2O) can change the tunneling probability and thus the overall conductivity, allowing their application as a simple and straightforward sensing concept.

13.
Opt Express ; 21(12): 13938-48, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23787583

RESUMO

The scattering of electrically excited surface plasmon polaritons (SPPs) into photons at the edges of gold metal stripes is investigated. The SPPs are locally generated by the inelastic tunneling current of a scanning tunneling microscope (STM). The majority of the collected light arising from the scattering of SPPs at the stripe edges is emitted in the forward direction and is collected at large angle (close to the air-glass critical angle, θ(c)). A much weaker isotropic component of the scattered light gives rise to an interference pattern in the Fourier plane images, demonstrating that plasmons may be scattered coherently. An analysis of the interference pattern as a function of excitation position on the stripe is used to determine a value of 1.42 ± 0.18 for the relative plasmon wave vector (kSPP/k0) of the corresponding SPPs. From these results, we interpret the directional, large angle (θ~θ(c)) scattering to be mainly from plasmons on the air-gold interface, and the diffuse scattering forming interference fringes to be dominantly from plasmons on the gold-substrate interface.


Assuntos
Ouro/química , Ouro/efeitos da radiação , Microscopia de Tunelamento/métodos , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
14.
J Colloid Interface Sci ; 394: 237-42, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23352701

RESUMO

In this paper, we demonstrate the template-assisted deposition of cetyltrimethylammonium bromide (CTAB) stabilized gold nanorods at lithographically defined positions on a substrate. Overcoating of the nanoparticles with polystyrenesulfonate allows to switch the original nanoparticles positive surface charge to negative and to apply the template-assisted deposition technique developed for citrate-capped gold nanoparticles also to CTAB stabilized nanoparticles. The successful, selective deposition of gold nanorods in trenches with widths down to 50 nm is demonstrated. Our results indicate the potential of this method for the fabrication of well controlled, reproducible plasmonic biosensing substrates, applicable to the vast palette of anisotropic nanoparticle shapes synthesized with CTAB as the templating agent.

15.
Nano Lett ; 12(11): 5780-3, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23025804

RESUMO

We map the complete plasmonic spectrum of silver nanodisks by electron energy loss spectroscopy and show that the mode which couples strongest to the electron beam has radial symmetry with no net dipole moment. Therefore, this mode does not couple to light and has escaped from observation in optical experiments. This radial breathing mode has the character of an extended two-dimensional surface plasmon with a wavenumber determined by the circular disk confinement. Its strong near fields can impact the hybridization in coupled plasmonic nanoparticles as well as couplings with nearby quantum emitters.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas/química , Prata/química , Elétrons , Nanopartículas/química , Nanoestruturas/química , Nanotecnologia/métodos , Oscilometria/métodos , Espectrofotometria/métodos , Ressonância de Plasmônio de Superfície
16.
Opt Lett ; 37(4): 746-8, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22344168

RESUMO

We launch surface plasmons from one end of a silver nanowire by asymmetric illumination with white light and use plasmon-to-light scattering at the nanowire ends to probe spectroscopically the plasmonic Fabry-Perot wire modes. The spectral positions of the maxima and minima in the scattered intensity from both nanowire ends are found to be either in-phase or out-of-phase, depending on the nanowire length and the spectral range. This behavior can be explained by a generalized Fabry-Perot model. The turnover point between the two regimes is sensitive to the surface plasmon round trip losses and thus opens a new possibility for detecting changes of the optical absorption in the nanowire environment.

17.
Nano Lett ; 12(2): 661-5, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22268794

RESUMO

We report on a spectroscopic study of surface plasmon damping and group velocity in polycrystalline silver and gold nanowires. By comparing to single-crystalline wires and by using different substrates, we quantitatively deduce the relative damping contributions due to metal crystallinity and absorption in the substrate. Compared to absorbing substrates, we find strongly reduced plasmonic damping for polycrystalline nanowires on quartz substrates, enabling the application of such wires for plasmonic waveguide networks.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Prata/química , Ressonância de Plasmônio de Superfície , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
18.
J Phys Chem Lett ; 2(8): 926-31, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26295630

RESUMO

The grafting of stimuli-responsive polymer brushes on plasmonic structures provides a perfectly controlled two-dimensional active device with optical properties that can be modified through external stimuli. Herein, we demonstrate thermally induced modifications of the plasmonic response of lithographic gold nanoparticles functionalized by thermosensitive polymer brushes of (poly(N-isopropylacrylamide), PNIPAM). Optical modifications result from refractive local index changes due to a phase transition from a hydrophilic state (swollen regime) to a hydrophobic state (collapsed regime) of the polymer chains occurring in a very small range of temperatures. The refractive index of the polymer in aqueous solution is estimated in both states, deduced from the discrete dipole approximation (DDA) method. The combination of lithographic gold NPs and thermoresponsive polymer chains leads to a new generation of perfectly calibrated and dynamically controlled hybrid gold/polymer system for real-time nanosensors.

19.
ACS Nano ; 4(11): 6491-500, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21028846

RESUMO

This paper describes a general stepwise strategy combining diazonium salt, surface-initiated atom transfer radical polymerization (SI-ATRP), and click chemistry for an efficient gold surface functionalization by poly(N-isopropylacrylamide) (PNIPAM) brushes and gold nanoparticle assemblies. We designed by this way a new plasmonic device made of gold nanoparticles separated from a gold film through a thermoresponsive polymer layer. This organic layer responds to temperature variations by conformational changes (with a characteristic temperature called the lower critical solution temperature, LCST) and is therefore able to vary the distance between the gold nanoparticles and the gold film. The optical properties of these stimulable substrates were probed by surface-enhanced raman scattering (SERS) using methylene blue (MB) as a molecular probe. We show that an increase of the external temperature reversibly induces a significant enhancement of the MB SERS signal. This was attributed to a stronger interaction between the gold nanoparticles and the gold substrate. The temperature-responsive plasmonic devices developed in this paper thus provide a dynamic SERS platform, with thermally switchable electromagnetic coupling between the gold nanoparticles and the gold surface.

20.
Nano Lett ; 9(5): 2144-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19361167

RESUMO

Control of the optical properties of metallic nanoparticles (NP) is realized using an electrochemical switch consisting of a thin layer of conducting polymer (CP). It is shown that the quenching of localized surface plasmon (LSP) sustained by oblate particles depends of the frequency of the LSP resonance. This effect is attributed to the variation of the CP dielectric function with wavelength. As a consequence, prolate arrays show total quenching of the LSP resonance along the major axis of the particles whereas modulation and moderate damping are observed along the minor axis. Combining electroactive conducting polymer and prolate NP makes it possible to design active plasmonic devices with anisotropic optical response upon CP switching. In the present case, such devices can be used as active filters or polarizers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...