Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(4): 954-968, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385292

RESUMO

BACKGROUND: Venous thromboembolism is a major health problem. After thrombus formation, its resolution is essential to re-establish blood flow, which is crucially mediated by infiltrating neutrophils and monocytes in concert with activated platelets and endothelial cells. Thus, we aimed to modulate leukocyte function during thrombus resolution post-thrombus formation by blocking P-selectin/CD62P-mediated cell interactions. METHODS: Thrombosis was induced by inferior vena cava stenosis through ligation in mice. After 1 day, a P-selectin-blocking antibody or isotype control was administered and thrombus composition and resolution were analyzed. RESULTS: Localizing neutrophils and macrophages in thrombotic lesions of wild-type mice revealed that these cells enter the thrombus and vessel wall from the caudal end. Neutrophils were predominantly present 1 day and monocytes/macrophages 3 days after vessel ligation. Blocking P-selectin reduced circulating platelet-neutrophil and platelet-Ly6Chigh monocyte aggregates near the thrombus, and diminished neutrophils and Ly6Chigh macrophages in the cranial thrombus part compared with isotype-treated controls. Depletion of neutrophils 1 day after thrombus initiation did not phenocopy P-selectin inhibition but led to larger thrombi compared with untreated controls. In vitro, P-selectin enhanced human leukocyte function as P-selectin-coated beads increased reactive oxygen species production by neutrophils and tissue factor expression of classical monocytes. Accordingly, P-selectin inhibition reduced oxidative burst in the thrombus and tissue factor expression in the adjacent vessel wall. Moreover, blocking P-selectin reduced thrombus density determined by scanning electron microscopy and increased urokinase-type plasminogen activator levels in the thrombus, which accelerated caudal fibrin degradation from day 3 to day 14. This accelerated thrombus resolution as thrombus volume declined more rapidly after blocking P-selectin. CONCLUSIONS: Inhibition of P-selectin-dependent activation of monocytes and neutrophils accelerates venous thrombosis resolution due to reduced infiltration and activation of innate immune cells at the site of thrombus formation, which prevents early thrombus stabilization and facilitates fibrinolysis.


Assuntos
Monócitos , Trombose , Camundongos , Humanos , Animais , Monócitos/patologia , Selectina-P , Células Endoteliais , Tromboplastina , Infiltração de Neutrófilos , Neutrófilos
2.
J Thromb Haemost ; 22(1): 188-198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37748582

RESUMO

BACKGROUND: During infection, neutrophil extracellular traps (NETs) are associated with severity of pulmonary diseases such as acute respiratory disease syndrome. NETs induce subsequent immune responses, are directly cytotoxic to pulmonary cells, and are highly procoagulant. Anticoagulation treatment was shown to reduce in-hospital mortality, indicating thromboinflammatory complications. However, data are sparsely available on the involvement of NETs in secondary events after virus clearance, which can lead to persistent lung damage and postacute sequelae with chronic fatigue and dyspnea. OBJECTIVES: This study focuses on late-phase events using a murine model of viral lung infection with postacute sequelae after virus resolution. METHODS: C57BL/6JRj mice were infected intranasally with the betacoronavirus murine coronavirus (MCoV, strain MHV-A95), and tissue samples were collected after 2, 4, and 10 days. For NET modulation, mice were pretreated with OM-85 or GSK484 and DNase I were administered intraperitoneally between days 2 to 5 and days 4 to 7, respectively. RESULTS: Rapid, platelet-attributed thrombus formation was followed by a second, late phase of thromboinflammation. This phase was characterized by negligible virus titers but pronounced tissue damage, apoptosis, oxidative DNA damage, and presence of NETs. Inhibition of NETs during the acute phase did not impact virus burden but decreased lung cell apoptosis by 67% and oxidative stress by 94%. Prevention of neutrophil activation by immune training before virus infection reduced damage by 75%, NETs by 31%, and pulmonary thrombi by 93%. CONCLUSION: NETs are detrimental inducers of tissue damage during respiratory virus infection but do not contribute to virus clearance.


Assuntos
Infecções por Coronavirus , Coronavirus , Armadilhas Extracelulares , Trombose , Animais , Camundongos , Neutrófilos , Tromboinflamação , Modelos Animais de Doenças , Inflamação/complicações , Trombose/complicações , Camundongos Endogâmicos C57BL , Pulmão , Infecções por Coronavirus/complicações
3.
Hepatol Commun ; 8(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099865

RESUMO

BACKGROUND: Posthepatectomy liver failure (PHLF) represents a life-threatening complication with limited therapeutic options. Neutrophils play a critical and dynamic role during regeneratory processes, but their role in human liver regeneration is incompletely understood, especially as underlying liver disease, detectable in the majority of patients, critically affects hepatic regeneration. Here we explored intrahepatic neutrophil accumulation and neutrophil extracellular traps (NETs) in patients with PHLF and validated the functional relevance of NETs in a murine partial hepatectomy (PHx) model. METHODS: We investigated the influx of neutrophils, macrophages, eosinophils, and mast cells and the presence of their respective extracellular traps in liver biopsies of 35 patients undergoing hepatectomy (10 patients with PHLF) before and after the initiation of liver regeneration by fluorescence microscopy. In addition, NET formation and neutrophil activation were confirmed by plasma analysis of 99 patients (24 patients with PHLF) before and up to 5 days after surgery. Furthermore, we inhibited NETs via DNase I in a murine PHx model of mice with metabolically induced liver disease. RESULTS: We detected rapid intrahepatic neutrophil accumulation, elevated levels of myeloperoxidase release, and NET formation in regenerating human livers, with a significantly higher increase of infiltrating neutrophils and NETs in patients with PHLF. Circulating markers of neutrophil activation, including elastase, myeloperoxidase, and citrullinated histone H3, correlated with markers of liver injury. In a murine PHx model, we showed that the inhibition of NET accelerated hepatocyte proliferation and liver regeneration. CONCLUSIONS: Patients with PHLF showed accelerated intrahepatic neutrophil infiltration and NET formation, which were associated with liver damage. Further, we identified postsurgical myeloperoxidase levels as predictive markers for adverse outcomes and observed that blocking NETs in a murine PHx model accelerated tissue regeneration.


Assuntos
Armadilhas Extracelulares , Hiperplasia Nodular Focal do Fígado , Falência Hepática , Humanos , Animais , Camundongos , Neutrófilos , Falência Hepática/etiologia , Peroxidase
4.
ESC Heart Fail ; 10(4): 2375-2385, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37190856

RESUMO

AIMS: Ischaemia-reperfusion injury (IRI) following myocardial infarction remains a challenging topic in acute cardiac care and consecutively arising heart failure represents a severe long-term consequence. The extent of neutrophil infiltration and neutrophil-mediated cellular damage are thought to be aggravating factors enhancing primary tissue injury. Toll-like receptor 9 was found to be involved in neutrophil activation as well as chemotaxis and may represent a target in modulating IRI, aspects we aimed to illuminate by pharmacological inhibition of the receptor. METHODS AND RESULTS: Forty-nine male adult Sprague-Dawley rats were used. IRI was induced by occlusion of the left coronary artery and subsequent snare removal after 30 min. Oligonucleotide (ODN) 2088, a toll-like receptor 9 (TLR9) antagonist, control-ODN, or DNase, were administered at the time of reperfusion and over 24 h via a mini-osmotic pump. The hearts were harvested 24 h or 4 weeks after left coronary artery occlusion and immunohistochemical staining was performed. Echocardiography was done after 1 and 4 weeks to determine ventricular function. Inhibition of TLR9 by ODN 2088 led to left ventricular wall thinning (P = 0.003) in association with drastically enhanced neutrophil infiltration (P = 0.005) and increased markers of tissue damage. Additionally, an up-regulation of the chemotactic receptor CXCR2 (P = 0.046) was found after TLR9 inhibition. No such effects were observed in control-ODN or DNase-treated animals. We did not observe changes in monocyte content or subset distribution, hinting towards neutrophils as the primary mediators of the exerted tissue injury. CONCLUSIONS: Our data indicate a TLR9-dependent, negative regulation of neutrophil infiltration. Blockage of TLR9 appears to prevent the down-regulation of CXCR2, followed by an uncontrolled migration of neutrophils towards the area of infarction and the exertion of disproportional tissue injury resulting in potential aneurysm formation. In comparison with previous studies conducted in TLR-/- mice, we deliberately chose a transient pharmacological inhibition of TLR9 to highlight effects occurring in the first 24 h following IRI.


Assuntos
Infarto do Miocárdio , Receptor Toll-Like 9 , Ratos , Camundongos , Masculino , Animais , Receptor Toll-Like 9/uso terapêutico , Ratos Sprague-Dawley , Infarto do Miocárdio/tratamento farmacológico , Coração , Vasos Coronários
5.
Thromb Res ; 223: 168-173, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758285

RESUMO

BACKGROUND: Venous thromboembolism (VTE) is the third most common cardiovascular disease and occurs in all age groups, albeit the risk increases considerably with age. Previous research indicates mitochondrial dysfunction and telomere shortening in cardiovascular aging. However, in the context of VTE this has not been investigated in detail. AIM: We aimed to explore biomarkers reflecting biological aging (i.e. human mitochondrial DNA copy number (mtDNA) and telomere length) and their association with VTE. METHODS: mtDNA and telomere length were measured in a case-control study of 116 patients with a history of VTE and 128 age- and sex-matched healthy individuals from isolated blood using a qPCR-based assay kit. Cases had at least one unprovoked VTE event and were enrolled no earlier than 3 months after the last VTE event. RESULTS: The mtDNA copy number was significantly lower in VTE cases compared to controls (median [IQR]: 663 per diploid cells [78.75-2204.5] vs. 2832 per diploid cells [724-4350]; p < 0.001). After adjustment for age, sex, BMI, and smoking, mtDNA copy number was independently associated with VTE risk (odds ratio per increase in 400 mtDNA per diploid cell: 0.889, 95%CI 0.834-0.947). mtDNA copy numbers were significantly different between women and men (2375 [455-3737] women vs. 893 [152-3154] men; p < 0.001). The analysis of telomere length showed no significant difference between patients and healthy controls. CONCLUSION: Lower mtDNA levels were found in patients with VTE compared to controls, indicating an association of biological aging with risk of VTE.


Assuntos
DNA Mitocondrial , Tromboembolia Venosa , Masculino , Humanos , Feminino , DNA Mitocondrial/genética , Variações do Número de Cópias de DNA , Estudos de Casos e Controles , Telômero , Envelhecimento/genética , Mitocôndrias , Biomarcadores
6.
Biochim Biophys Acta Mol Basis Dis ; 1869(3): 166616, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36513287

RESUMO

Atherosclerosis is a chronic, inflammatory disease of the vessel wall where triggered immune cells bind to inflamed endothelium, extravasate and sustain local inflammation. Leukocyte adhesion and extravasation are mediated by adhesion molecules expressed by activated endothelial cells, like intercellular adhesion molecule 1 (ICAM-1). Extracellular adherence protein (Eap) from Staphylococcus aureus binds to a plethora of extracellular matrix proteins, including ICAM-1 and its ligands macrophage-1 antigen (Mac-1, αMß2) and lymphocyte function-associated antigen 1 (LFA-1, αLß2), thereby disrupting the interaction between leukocytes and endothelial cells. We aimed to use Eap to inhibit the interaction of leukocytes with activated endothelial cells in settings of developing and established atherosclerosis in apolipoprotein E (ApoE) deficient mice on high-fat diet. In developing atherosclerosis, Eap treatment reduced circulating platelet-neutrophil aggregates as well as infiltration of T cells and neutrophils into the growing plaque, accompanied by reduced formation of neutrophil extracellular traps (NETs). However, plaque size did not change. Intervention treatment with Eap of already established plaques did not result in cellular or morphological plaque changes, whereas T cell infiltration was increased and thereby again modulated by Eap. We conclude that although Eap leads to cellular changes in developing plaques, clinical implications might be limited as patients are usually treated at a more advanced stage of disease progression. Hence, usage of Eap might be an interesting mechanistic tool for cellular infiltration during plaque development in basic research but not a clinical target.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Molécula 1 de Adesão Intercelular/genética , Staphylococcus aureus/metabolismo , Células Endoteliais/metabolismo , Antígeno-1 Associado à Função Linfocitária/genética , Fenótipo
7.
FASEB J ; 36(10): e22532, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063138

RESUMO

Interleukin-4 (IL-4) and its receptors (IL-4R) promote the proliferation and polarization of macrophages. However, it is unknown if IL-4R also influences monocyte homeostasis and if steady state IL-4 levels are sufficient to affect monocytes. Employing full IL-4 receptor alpha knockout mice (IL-4Rα-/- ) and mice with a myeloid-specific deletion of IL-4Rα (IL-4Rαf/f LysMcre ), we show that IL-4 acts as a homeostatic factor regulating circulating monocyte numbers. In the absence of IL-4Rα, murine monocytes in blood were reduced by 50% without altering monocytopoiesis in the bone marrow. This reduction was accompanied by a decrease in monocyte-derived inflammatory cytokines in the plasma. RNA sequencing analysis and immunohistochemical staining of splenic monocytes revealed changes in mRNA and protein levels of anti-apoptotic factors including BIRC6 in IL-4Rα-/- knockout animals. Furthermore, assessment of monocyte lifespan in vivo measuring BrdU+ cells revealed that the lifespan of circulating monocytes was reduced by 55% in IL-4Rα-/- mice, whereas subcutaneously applied IL-4 prolonged it by 75%. Treatment of human monocytes with IL-4 reduced the amount of dying monocytes in vitro. Furthermore, IL-4 stimulation reduced the phosphorylation of proteins involved in the apoptosis pathway, including the phosphorylation of the NFκBp65 protein. In a cohort of human patients, serum IL-4 levels were significantly associated with monocyte counts. In a sterile peritonitis model, reduced monocyte counts resulted in an attenuated recruitment of monocytes upon inflammatory stimulation in IL-4Rαf/f LysMcre mice without changes in overall migratory function. Thus, we identified a homeostatic role of IL-4Rα in regulating the lifespan of monocytes in vivo.


Assuntos
Interleucina-4/metabolismo , Monócitos , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Animais , Homeostase , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Monócitos/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(29): e2207020119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858345

RESUMO

Changes in Ca2+ influx during proinflammatory stimulation modulates cellular responses, including the subsequent activation of inflammation. Whereas the involvement of Ca2+ has been widely acknowledged, little is known about the role of Na+. Ranolazine, a piperazine derivative and established antianginal drug, is known to reduce intracellular Na+ as well as Ca2+ levels. In stable coronary artery disease patients (n = 51) we observed reduced levels of high-sensitive C-reactive protein (CRP) 3 mo after the start of ranolazine treatment (n = 25) as compared to the control group. Furthermore, we found that in 3,808 acute coronary syndrome patients of the MERLIN-TIMI 36 trial, individuals treated with ranolazine (1,934 patients) showed reduced CRP values compared to placebo-treated patients. The antiinflammatory effects of sodium modulation were further confirmed in an atherosclerotic mouse model. LDL-/- mice on a high-fat diet were treated with ranolazine, resulting in a reduced atherosclerotic plaque burden, increased plaque stability, and reduced activation of the immune system. Pharmacological Na+ inhibition by ranolazine led to reduced express of adhesion molecules and proinflammatory cytokines and reduced adhesion of leukocytes to activated endothelium both in vitro and in vivo. We demonstrate that functional Na+ shuttling is required for a full cellular response to inflammation and that inhibition of Na+ influx results in an attenuated inflammatory reaction. In conclusion, we demonstrate that inhibition of Na+-Ca2+ exchange during inflammation reduces the inflammatory response in human endothelial cells in vitro, in a mouse atherosclerotic disease model, and in human patients.


Assuntos
Síndrome Coronariana Aguda , Proteína C-Reativa , Fármacos Cardiovasculares , Doença da Artéria Coronariana , Ranolazina , Bloqueadores dos Canais de Sódio , Sódio , Síndrome Coronariana Aguda/tratamento farmacológico , Animais , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Doença da Artéria Coronariana/tratamento farmacológico , Células Endoteliais/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Camundongos , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico
9.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35163803

RESUMO

Quantitative and functional analysis of mononuclear leukocyte populations is an invaluable tool to understand the role of the immune system in the pathogenesis of a disease. Cryopreservation of mononuclear cells (MNCs) is routinely used to guarantee similar experimental conditions. Immune cells react differently to cryopreservation, and populations and functions of immune cells change during the process of freeze-thawing. To allow for a setup that preserves cell number and function optimally, we tested four different cryopreservation media. MNCs from 15 human individuals were analyzed. Before freezing and after thawing, the distribution of leukocytes was quantified by flow cytometry. Cultured cells were stimulated using lipopolysaccharide, and their immune response was quantified by flow cytometry, quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA). Ultimately, the performance of the cryopreservation media was ranked. Cell recovery and viability were different between the media. Cryopreservation led to changes in the relative number of monocytes, T cells, B cells, and their subsets. The inflammatory response of MNCs was altered by cryopreservation, enhancing the basal production of inflammatory cytokines. Different cryopreservation media induce biases, which needs to be considered when designing a study relying on cryopreservation. Here, we provide an overview of four different cryopreservation media for choosing the optimal medium for a specific task.


Assuntos
Técnicas de Cultura de Células/métodos , Criopreservação/métodos , Leucócitos Mononucleares/citologia , Sobrevivência Celular , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Contagem de Leucócitos , Leucócitos Mononucleares/metabolismo , Masculino
10.
J Innate Immun ; 14(4): 293-305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34775384

RESUMO

Training of the innate immune system with orally ingested bacterial extracts was demonstrated to have beneficial effects on infection clearance and disease outcome. The aim of our study was to identify cellular and molecular processes responsible for these immunological benefits. We used a murine coronavirus (MCoV) A59 mouse model treated with the immune activating bacterial extract Broncho-Vaxom (BV) OM-85. Tissue samples were analysed with qPCR, RNA sequencing, histology, and flow cytometry. After BV OM-85 treatment, interstitial macrophages accumulated in lung tissue leading to a faster response of type I interferon (IFN) signalling after MCoV infection resulting in overall lung tissue protection. Moreover, RNA sequencing showed that lung tissue from mice receiving BV OM-85 resembled an intermediate stage between healthy and viral infected lung tissue at day 4, indicating a faster return to normal tissue homoeostasis. The pharmacologic effect was mimicked by adoptively transferring naive lung macrophages into lungs from recipient mice before virus infection. The beneficial effect of BV OM-85 was abolished when inhibiting initial type I IFN signalling. Overall, our data suggest that BV OM-85 enhances lung macrophages allowing for a faster IFN response towards a viral challenge as part of the oral-induced innate immune system training.


Assuntos
Adjuvantes Imunológicos , Betacoronavirus , Animais , Bactérias , Imunidade Inata , Pulmão , Macrófagos , Camundongos
11.
Mol Ther Nucleic Acids ; 26: 1228-1239, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34853722

RESUMO

We have previously shown that treatment with third-generation antisense oligonucleotides against miR-494-3p (3GA-494) reduces atherosclerotic plaque progression and stabilizes lesions, both in early and established plaques, with reduced macrophage content in established plaques. Within the plaque, different subtypes of macrophages are present. Here, we aimed to investigate whether miR-494-3p directly influences macrophage polarization and activation. Human macrophages were polarized into either proinflammatory M1 or anti-inflammatory M2 macrophages and simultaneously treated with 3GA-494 or a control antisense (3GA-ctrl). We show that 3GA-494 treatment inhibited miR-494-3p in M1 macrophages and dampened M1 polarization, while in M2 macrophages miR-494-3p expression was induced and M2 polarization enhanced. The proinflammatory marker CCR2 was reduced in 3GA-494-treated atherosclerosis-prone mice. Pathway enrichment analysis predicted an overlap between miR-494-3p target genes in macrophage polarization and Wnt signaling. We demonstrate that miR-494-3p regulates expression levels of multiple Wnt signaling components, such as LRP6 and TBL1X. Wnt signaling appears activated upon treatment with 3GA-494, both in cultured M1 macrophages and in plaques of hypercholesterolemic mice. Taken together, 3GA-494 treatment dampened M1 polarization, at least in part via activated Wnt signaling, while M2 polarization was enhanced, which is both favorable in reducing atherosclerotic plaque formation and increasing plaque stability.

12.
Genes (Basel) ; 12(8)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34440358

RESUMO

BACKGROUND: Fabry disease is a hereditary genetic defect resulting in reduced activity of the enzyme α-galactosidase-A and the accumulation of globotriaosylceramide (Gb3) in body fluids and cells. Gb3 accumulation was especially reported for the vascular endothelium in several organs. METHODS: Three Fabry disease patients were screened using a micro-RNA screen. An in vitro approach in human endothelial cells was used to determine miRNA regulation by Gb3. RESULTS: In a micro-RNA screen of three Fabry patients undergoing enzyme replacement therapy, we found that miRNAs let-7a and let-7d were significantly increased after therapy. We demonstrate in vitro in endothelial cells that Gb3 induced activation of NF-κB and activated downstream targets. In addition, NF-κB activity directly reduced let-7a and let-7d miRNA expression as inhibiting NF-kB nuclear entry abolished the Gb3 effects. CONCLUSION: We suggest that let-7a and let-7d are potential markers for enzyme activity and inflammation in Fabry disease patients.


Assuntos
Doença de Fabry/genética , Doença de Fabry/metabolismo , MicroRNAs/genética , Triexosilceramidas/metabolismo , Adulto , Células Cultivadas , Células Endoteliais/metabolismo , Terapia de Reposição de Enzimas , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo
13.
Biochem Pharmacol ; 190: 114634, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34058186

RESUMO

BACKGROUND: Inflammation is a key process during atherosclerotic lesion development and propagation. Recent evidence showed clearly that especially the inhibition of interleukin (IL)-1ß reduced atherosclerotic adverse events in human patients. Fatty acid oxidation (FAO) was previously demonstrated to interact with the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) pathway which is required for mature IL-1ß secretion. To understand possible anti-inflammatory properties of FAO inhibition, we tested the effect of pharmacological FAO inhibition using the inhibitor for long-chain 3-ketoacyl coenzyme A thiolase trimetazidine on atherosclerotic plaque development and inflammation. EXPERIMENTAL APPROACH: The effect of FAO inhibition was determined in LDL-R-/- male mice on a C57/BL6 background. In vitro effects of trimetazidine treatment were analyzed in human umbilical vein endothelial cells and human monocyte derived macrophages. KEY RESULTS: We were able to demonstrate that inhibition of FAO reduced atherosclerotic plaque growth. We did not find direct anti-inflammatory properties of trimetazidine in endothelial cells or macrophages in vitro. However, we found that the activation of the NLRP3 system and the secretion of IL-1ß were significantly reduced in macrophages after FAO inhibition. These results were confirmed in atherosclerotic lesions of mice treated with trimetazidine as they showed a significant reduction of IL-1ß and cleaved caspase-1 in the atherosclerotic lesion as well as of IL-1ß and IL-18 in the circulation. CONCLUSION: Overall, we therefore suggest that the main mechanism of reducing inflammation of trimetazidine and FAO inhibition is the reduction of the NLRP-3 activation leading to reduced levels of the proinflammatory cytokine IL-1ß.


Assuntos
Aterosclerose/prevenção & controle , Ácidos Graxos/metabolismo , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores de LDL/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Oxirredução , Receptores de LDL/genética , Trimetazidina/farmacologia , Vasodilatadores/farmacologia
14.
J Clin Lipidol ; 15(3): 512-521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33789832

RESUMO

BACKGROUND: Proprotein convertase subtilisin/kexin type-9 (PCSK9) is an enzyme promoting the degradation of low-density lipoprotein receptors (LDL-R) in hepatocytes. Inhibition of PCSK9 has emerged as a novel target for lipid-lowering therapy. Monocytes are crucially involved in the pathogenesis of atherosclerosis and can be divided into three subsets. OBJECTIVE: The aim of this study was to examine whether circulating levels of PCSK9 are associated with monocyte subsets. METHODS: We included 69 patients with stable coronary artery disease. PCSK9 levels were measured and monocyte subsets were assessed by flow cytometry and divided into classical monocytes (CD14++CD16-; CM), intermediate monocytes (CD14++CD16+; IM) and non-classical monocytes (CD14+CD16++; NCM). RESULTS: Mean age was 64 years and 80% of patients were male. Patients on statin treatment (n = 55) showed higher PCSK9-levels (245.4 (206.0-305.5) ng/mL) as opposed to those without statin treatment (186.1 (162.3-275.4) ng/mL; p = 0.05). In patients on statin treatment, CM correlated with circulating PCSK9 levels (R = 0.29; p = 0.04), while NCM showed an inverse correlation with PCSK9 levels (R = -0.33; p = 0.02). Patients with PCSK9 levels above the median showed a significantly higher proportion of CM as compared to patients with PCSK9 below the median (83.5 IQR 79.2-86.7 vs. 80.4, IQR 76.5-85.2%; p = 0.05). Conversely, PCSK9 levels >median were associated with a significantly lower proportion of NCM as compared to those with PCSK9

Assuntos
Doença da Artéria Coronariana/sangue , Monócitos/enzimologia , Pró-Proteína Convertase 9/sangue , Idoso , LDL-Colesterol/sangue , Doença da Artéria Coronariana/tratamento farmacológico , Estudos Transversais , Feminino , Citometria de Fluxo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Imunidade Inata , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia
15.
Biomedicines ; 9(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513743

RESUMO

Nicorandil, a balanced vasodilator, is used in the second-line therapy of angina pectoris. In this study, we aimed to illuminate the effects of nicorandil on inflammation, apoptosis, and atherosclerotic plaque progression. Twenty-five LDL-R -/- mice were fed a high-fat diet for 14 weeks. After 6 weeks mice were randomly allocated to treatment with nicorandil (10 mg/kg/day) or tap water. Nicorandil treatment led to a more stable plaque phenotype, displaying an increased thickness of the fibrous cap (p = 0.014), a significant reduction in cholesterol clefts (p = 0.045), and enhanced smooth muscle cell content (p = 0.009). In endothelial cells nicorandil did not reduce the induction of adhesion molecules or proinflammatory cytokines. In H2O2 challenged endothelial cells, pretreatment with nicorandil significantly reduced the percentage of late apoptotic/necrotic cells (p = 0.016) and the ratio of apoptotic to living cells (p = 0.036). Atherosclerotic lesions of animals treated with nicorandil exhibited a significantly decreased content of cleaved caspase-3 (p = 0.034), lower numbers of apoptotic nuclei (p = 0.040), and reduced 8-oxogunanine staining (p = 0.039), demonstrating a stabilizing effect of nicorandil in established atherosclerotic lesions. We suggest that nicorandil has a positive effect on atherosclerotic plaque stabilization by reducing apoptosis.

16.
Haematologica ; 106(2): 454-463, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31974204

RESUMO

Macrophages are versatile cells that can be polarized by the tissue environment to fulfill required needs. Proinflammatory polarization is associated with increased tissue degradation and propagation of inflammation whereas alternative polarization within a Th2 cytokine environment is associated with wound healing and angiogenesis. To understand if polarization of macrophages can lead to a procoagulant macrophage subset we polarized human monocyte derived macrophages to a proinflammatory and an alternative activation state. Alternative polarization with interleukin-4 and IL-13 led to a macrophage phenotype characterized by increased tissue factor (TF) production and release and by an increase in extracellular vesicle production. In addition, also TF activity was enhanced in extracellular vesicles of alternatively polarized macrophages. This TF induction was dependent on signal transducer and activator of transcription-6 signaling and poly ADP ribose polymerase activity. In contrast to monocytes, human macrophages did not show increased tissue factor expression upon stimulation with lipopolysaccharide and interferon-γ. Previous polarization to either a proinflammatory or an alternative activation subset does not change the subsequent stimulation of TF. The inability of proinflammatory activated macrophages to respond to lipopolysaccharide and interferon-γ with an increase in TF production seems to be due to an increase in TF promoter methylation and was reversible when treating these macrophages with a demethylation agent. In conclusion, we provide evidence that proinflammatory polarization of macrophages does not lead to enhanced procoagulatory function, whereas alternative polarization of macrophages leads to an increased expression of TF and increased production of TF bearing extracellular vesicles by these cells suggesting a procoagulatory phenotype of alternatively polarized macrophages.


Assuntos
Vesículas Extracelulares , Tromboplastina , Citocinas , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos , Tromboplastina/genética
17.
Am J Cancer Res ; 11(12): 6042-6059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35018241

RESUMO

Recent data suggest that the disease-associated microenvironment, known as the leukemic stem cell (LSC) niche, is substantially involved in drug resistance of LSC in BCR-ABL1+ chronic myeloid leukemia (CML). Attacking the LSC niche in CML may thus be an effective approach to overcome drug resistance. We have recently shown that osteoblasts are a major site of niche-mediated LSC resistance against second- and third-generation tyrosine kinase inhibitors (TKI) in CML. In the present study, we screened for drugs that are capable of suppressing the growth and viability of osteoblasts and/or other niche cells and can thereby overcome TKI resistance of CML LSC. Proliferation was analyzed by determining 3H-thymidine uptake in niche-related cells, and apoptosis was measured by Annexin-V/DAPI-staining and flow cytometry. We found that the dual PI3 kinase (PI3K) and mTOR inhibitor BEZ235 and the selective pan-PI3K inhibitor copanlisib suppress proliferation of primary osteoblasts (BEZ235 IC50: 0.05 µM; copanlisib IC50: 0.05 µM), the osteoblast cell line CAL-72 (BEZ235 IC50: 0.5 µM; copanlisib IC50: 1 µM), primary umbilical vein-derived endothelial cells (BEZ235 IC50: 0.5 µM; copanlisib IC50: 0.5 µM), and the vascular endothelial cell line HMEC-1 (BEZ235 IC50: 1 µM; copanlisib IC50: 1 µM), whereas no comparable effects were seen with the mTOR inhibitor rapamycin. Furthermore, we show that BEZ235 and copanlisib cooperate with nilotinib and ponatinib in suppressing proliferation and survival of osteoblasts and endothelial cells. Finally, BEZ235 and copanlisib were found to overcome osteoblast-mediated resistance against nilotinib and ponatinib in K562 cells, KU812 cells and primary CD34+/CD38- CML LSC. Together, targeting osteoblastic niche cells through PI3K inhibition may be a new effective approach to overcome niche-induced TKI resistance in CML. Whether this approach can be translated into clinical application and can counteract drug resistance of LSC in patients with CML remains to be determined in clinical trials.

18.
J Leukoc Biol ; 109(6): 1139-1146, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33020969

RESUMO

After successful cardiopulmonary resuscitation (CPR), many patients show signs of an overactive immune activation. Monocytes are a heterogeneous cell population that can be distinguished into 3 subsets by flow cytometry (classical monocytes [CM: CD14++ CD16- ], intermediate monocytes [IM: CD14++ CD16+ CCR2+ ] and non-classical monocytes [NCM: CD14+ CD16++ CCR2- ]). Fifty-three patients admitted to the medical intensive care unit (ICU) after cardiac arrest were included. Blood was taken on admission and after 72 h. The primary endpoint of this study was survival at 6 months and the secondary endpoint was neurological outcome as determined by cerebral performance category (CPC)-score at 6 months. Median age was 64.5 (49.8-74.3) years and 75.5% were male. Six-month mortality was 50.9% and survival with good neurological outcome was 37.7%. Monocyte subset distribution upon admission to the ICU did not differ according to survival. Seventy-two hours after admission, patients who died within 6 months showed a higher percentage of the pro-inflammatory subset of IM (8.3% [3.8-14.6]% vs. 4.1% [1.5-8.2]%; P = 0.025), and a lower percentage of CM (87.5% [79.9-89.0]% vs. 90.8% [85.9-92.7]%; P = 0.036) as compared to survivors. In addition, IM were predictive of outcome independent of time to ROSC and witnessed cardiac arrest, and correlated with CPC-score at 6 months (R = 0.32; P = 0.043). These findings suggest a possible role of the innate immune system in the pathophysiology of post cardiac arrest syndrome.


Assuntos
Biomarcadores , Polaridade Celular/imunologia , Parada Cardíaca/mortalidade , Monócitos/imunologia , Monócitos/metabolismo , Idoso , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Parada Cardíaca/etiologia , Humanos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais
19.
Arterioscler Thromb Vasc Biol ; 40(9): 2265-2278, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32673525

RESUMO

OBJECTIVE: Macrophages are immune cells, capable to remodel the extracellular matrix, which can harbor extracellular DNA incorporated into neutrophil extracellular traps (NETs). To study the breakdown of NETs we studied the capability of macrophage subsets to degrade these structures in vitro and in vivo in a murine thrombosis model. Furthermore, we analyzed human abdominal aortic aneurysm samples in support of our in vitro and in vivo results. Approach and Results: Macrophages were seeded onto blood clots or isolated NETs and polarized. All macrophages were capable to degrade NETs. For initial breakdown, macrophages relied on extracellular deoxyribonucleases. Proinflammatory polarization enhanced NET degradation. The boost in degradation was because of increased macropinocytosis, as inhibition by imipramine diminished their NET breakdown. Inhibition of macropinocytosis in a murine thrombosis model led to increased NET burden and reduced thrombus resolution in vivo. When analyzing abdominal aortic aneurysm samples, macrophage density furthermore corresponded negatively with the amount of local NETs in the intraluminal thrombi as well as in the vessel wall, as increased macrophage density was associated with a reduction in NET burden. CONCLUSIONS: We provide evidence that macrophages degrade NETs by extracellular predigestion and subsequent uptake. Furthermore, we show that proinflammatory macrophages increase NET degradation through enhanced macropinocytosis, priming them for NET engulfment. Based on our findings, that inhibition of macropinocytosis in mice corresponded to increased NET amounts in thrombi and that local macrophage density in human abdominal aortic aneurysm is negatively associated with surrounding NETs, we hypothesize, that macrophages are able to degrade NETs in vivo.


Assuntos
Endodesoxirribonucleases/metabolismo , Armadilhas Extracelulares/metabolismo , Ativação de Macrófagos , Macrófagos/enzimologia , Neutrófilos/metabolismo , Pinocitose , Animais , Aneurisma da Aorta Abdominal/metabolismo , Células Cultivadas , Desoxirribonuclease I/metabolismo , Desoxirribonucleases/metabolismo , Modelos Animais de Doenças , Exodesoxirribonucleases/metabolismo , Feminino , Humanos , Imipramina/farmacologia , Interferon gama/farmacologia , Interleucina-13/farmacologia , Interleucina-4/farmacologia , Cinética , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/metabolismo , Fagocitose , Fenótipo , Fosfoproteínas/metabolismo , Pinocitose/efeitos dos fármacos , Veia Cava Inferior/metabolismo , Trombose Venosa/metabolismo
20.
Resuscitation ; 155: 32-38, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522698

RESUMO

AIM: Current guidelines suggest the use of epinephrine in patients with cardiac arrest (CA). However, evidence for increased survival in good neurological condition is lacking. In experimental settings, epinephrine-induced impairment of microvascular flow was shown. The aim of our study was to analyze the association between epinephrine treatment and intestinal injury in patients after CA. METHODS: We have included 52 patients with return of spontaneous circulation (ROSC) after CA admitted to our medical intensive care unit (ICU). Blood was taken on admission and levels of circulating intestinal fatty acid binding protein (iFABP) were analyzed. RESULTS: Patients were 64 (49.8-73.8) years old and predominantly male (76.9%). After six months, 50% of patients died and 38.5% of patients had a cerebral performance category (CPC)-score of 1-2. iFABP levels were lower in survivors (234 IQR 90-399 pg/mL) as compared to non-survivors (283, IQR 86-11500 pg/mL; p < 0.05). Plasma levels of iFABP were not associated with time to ROSC but correlated with epinephrine-dose (R = 0.32; p < 0.05). 40% of patients receiving ≥3 mg of epinephrine as compared to 10.5% of patients treated with <3 mg (p < 0.05) developed iFABP plasma levels >1500 pg/mL, which was associated with dramatically increased mortality (HR4.87, 95%CI 1.95-12.1; p < 0.001). iFABP levels predicted mortality independent from time to ROSC and the disease severity score SAPS II. In contrast to mortality, iFABP plasma levels were not associated with neurological outcome. CONCLUSIONS: In this small, single centre study, cumulative dose of epinephrine used in cardiac arrest patients was associated with an increase in biomarker indicative of intestinal injury and 6-month mortality.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Parada Cardíaca Extra-Hospitalar , Idoso , Biomarcadores , Epinefrina , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Parada Cardíaca Extra-Hospitalar/tratamento farmacológico , Escore Fisiológico Agudo Simplificado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...