Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826287

RESUMO

The cell-type specific role of the vascular endothelial growth factors (VEGFs) in the pathogenesis of Alzheimer's disease (AD) is not well characterized. In this study, we utilized a single-nucleus RNA sequencing dataset from Dorsolateral Prefrontal Cortex (DLFPC) of 424 donors from the Religious Orders Study and Memory and Aging Project (ROS/MAP) to investigate the effect of 10 VEGF genes ( VEGFA, VEGFB, VEGFC, VEGFD, PGF, FLT1, FLT4, KDR, NRP1 , and NRP2 ) on AD endophenotypes. Mean age of death was 89 years, among which 68% were females, and 52% has AD dementia. Negative binomial mixed models were used for differential expression analysis and for association analysis with ß-amyloid load, PHF tau tangle density, and both cross-sectional and longitudinal global cognitive function. Intercellular VEGF-associated signaling was profiled using CellChat. We discovered prefrontal cortical FLT1 expression was upregulated in AD brains in both endothelial and microglial cells. Higher FLT1 expression was also associated with worse cross-sectional global cognitive function, longitudinal cognitive trajectories, and ß-amyloid load. Similarly, higher endothelial FLT4 expression was associated with more ß-amyloid load. In contrast to the receptors, VEGFB showed opposing effects on ß-amyloid load whereby higher levels in oligodendrocytes was associated with high amyloid burden, while higher levels in inhibitory neurons was associated with lower amyloid burden. Finally, AD cells showed significant reduction in overall VEGF signaling comparing to those from cognitive normal participants. Our results highlight key changes in VEGF receptor expression in endothelial and microglial cells during AD, and the potential protective role of VEGFB in neurons.

2.
JAMA Neurol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884955

RESUMO

Importance: Studies have suggested that maternal history of late-onset Alzheimer disease, but not paternal, predisposes individuals to higher brain ß-amyloid (Aß) burden, reduced brain metabolism, and lower gray matter volumes. Objective: To characterize maternal vs paternal history of memory impairment in terms of brain Aß-positron emission tomography (Aß-PET) and baseline cognition among a large sample of cognitively unimpaired older adults. Design, Setting, and Participants: This cross-sectional study leveraged data from 4413 individuals who were screened for the Anti-Amyloid Treatment in Asymptomatic Alzheimer (A4) study, a randomized clinical trial conducted across 67 sites in the US, Australia, Canada, and Japan aimed at Alzheimer disease prevention. Data were collected between April 2014 and December 2017 and analyzed from December 2022 to June 2023. Participants were cognitively unimpaired adults (Clinical Dementia Rating = 0 and/or Mini-Mental State Examination score ≥25) between the ages of 65 and 85 years who underwent PET imaging to assess cortical Aß levels for trial eligibility. A total of 4492 participants were screened, and 79 missing data were excluded. Main Outcomes and Measures: Demographic characteristics (eg, age, sex, education), apolipoprotein E genotyping, participant-reported parental history of memory impairment and parental age at symptom onset were collected as variables. Parental history was assessed in terms of continuous neocortical 18F-florbetapir Aß-PET and the Preclinical Alzheimer Cognitive Composite. Results: Of 4413 individuals (mean [SD] age, 71.27 [4.66] years, 2617 women [59.3%]), mean Aß-PET was elevated in individuals with history of memory impairment in both parents (n = 455; mean [SD] standardized uptake value ratio [SUVR] = 1.12 [0.19]; Wilcoxon P = 1.1 × 10-5) and in those with only maternal history (n = 1772; mean [SD] SUVR = 1.10 [0.19]; Wilcoxon P = 2.70 × 10-5) compared with those with only paternal history (n = 632; mean [SD] SUVR = 1.08 [0.18]; Wilcoxon P = 1.1 × 10-5) or no family history (n = 1554; mean [SD] SUVR = 1.08 [0.19]; Wilcoxon P = 1.1 × 10-5). Paternal history of early-onset memory impairment (age <65 years) but not late-onset (age ≥65 years) was associated with elevated participant Aß-PET (mean [SD] SUVR = 1.19 [0.21]; P = 3.00 × 10-6) in comparison with no paternal history (mean [SD] SUVR = 1.09 [0.19]) whereas maternal history was associated with elevated Aß in both early-onset and late-onset groups. There was no association with cognition. Conclusions and Relevance: In this study, maternal history (at any age) and paternal history of early-onset memory impairment were associated with Aß burden among asymptomatic older individuals. Sex-specific parental history may help inform clinicians on likelihood of Aß burden in offspring and help identify high-risk individuals at the earliest stages of disease for prevention.

3.
Mol Neurodegener ; 19(1): 41, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760857

RESUMO

Recent evidence suggests that Alzheimer's disease (AD) genetic risk variants (rs1582763 and rs6591561) of the MS4A locus are genome-wide significant regulators of soluble TREM2 levels such that the minor allele of the protective variant (rs1582763) is associated with higher sTREM2 and lower AD risk while the minor allele of (rs6591561) relates to lower sTREM2 and higher AD risk. Our group previously found that higher sTREM2 relates to higher Aß40, worse blood-brain barrier (BBB) integrity (measured with the CSF/plasma albumin ratio), and higher CSF tau, suggesting strong associations with amyloid abundance and both BBB and neurodegeneration complicate interpretation. We expand on this work by leveraging these common variants as genetic tools to tune the interpretation of high CSF sTREM2, and by exploring the potential modifying role of these variants on the well-established associations between CSF sTREM2 as well as TREM2 transcript levels in the brain with AD neuropathology. Biomarker analyses leveraged data from the Vanderbilt Memory & Aging Project (n = 127, age = 72 ± 6.43) and were replicated in the Alzheimer's Disease Neuroimaging Initiative (n = 399, age = 73 ± 7.39). Autopsy analyses were performed leveraging data from the Religious Orders Study and Rush Memory and Aging Project (n = 577, age = 89 ± 6.46). We found that the protective variant rs1582763 attenuated the association between CSF sTREM2 and Aß40 (ß = -0.44, p-value = 0.017) and replicated this interaction in ADNI (ß = -0.27, p = 0.017). We did not observe this same interaction effect between TREM2 mRNA levels and Aß peptides in brain (Aß total ß = -0.14, p = 0.629; Aß1-38, ß = 0.11, p = 0.200). In contrast to the effects on Aß, the minor allele of this same variant seemed to enhance the association with blood-brain barrier dysfunction (ß = 7.0e-4, p = 0.009), suggesting that elevated sTREM2 may carry a much different interpretation in carriers vs. non-carriers of this allele. When evaluating the risk variant (rs6591561) across datasets, we did not observe a statistically significant interaction against any outcome in VMAP and observed opposing directions of associations in ADNI and ROS/MAP on Aß levels. Together, our results suggest that the protective effect of rs1582763 may act by decoupling the associations between sTREM2 and amyloid abundance, providing important mechanistic insight into sTREM2 changes and highlighting the need to incorporate genetic context into the analysis of sTREM2 levels, particularly if leveraged as a clinical biomarker of disease in the future.


Assuntos
Doença de Alzheimer , Biomarcadores , Glicoproteínas de Membrana , Receptores Imunológicos , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Idoso , Masculino , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Feminino , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Predisposição Genética para Doença
4.
Elife ; 122024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787369

RESUMO

Rich data from large biobanks, coupled with increasingly accessible association statistics from genome-wide association studies (GWAS), provide great opportunities to dissect the complex relationships among human traits and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based biobank-wide association scans. Compared to traditional approaches, BADGERS uses GWAS summary statistics as input and does not require multiple traits to be measured in the same cohort. We applied BADGERS to two independent datasets for late-onset Alzheimer's disease (AD; n=61,212). Among 1738 traits in the UK biobank, we identified 48 significant associations for AD. Family history, high cholesterol, and numerous traits related to intelligence and education showed strong and independent associations with AD. Furthermore, we identified 41 significant associations for a variety of AD endophenotypes. While family history and high cholesterol were strongly associated with AD subgroups and pathologies, only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel insights into the distinct biological processes underlying various risk factors for AD.


Assuntos
Doença de Alzheimer , Bancos de Espécimes Biológicos , Endofenótipos , Estudo de Associação Genômica Ampla , Doença de Alzheimer/genética , Humanos , Fatores de Risco , Masculino , Feminino , Reino Unido/epidemiologia , Idoso , Predisposição Genética para Doença , Herança Multifatorial/genética , Idoso de 80 Anos ou mais
5.
Neurobiol Aging ; 140: 93-101, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761538

RESUMO

Platelet activation of protease-activated receptor 4 (PAR4) and thrombin are at the top of a chain of events leading to fibrin deposition, microinfarcts, blood-brain barrier disruption, and inflammation. We evaluated mRNA expression of the PAR4 gene F2RL3 in human brain and global cognitive performance in participants with and without cognitive impairment or dementia. Data were acquired from the Religious Orders Study (ROS) and the Rush Memory and Aging Project (MAP). F2RL3 mRNA was elevated in AD cases and was associated with worse retrospective longitudinal cognitive performance. Moreover, F2RL3 expression interacted with clinical AD diagnosis on longitudinal cognition whereas this relationship was attenuated in individuals without cognitive impairment. Additionally, when adjusting for the effects of AD neuropathology, F2RL3 expression remained a significant predictor of cognitive decline. F2RL3 expression correlated positively with transcript levels of proinflammatory markers including TNFα, IL-1ß, NFκB, and fibrinogen α/ß/γ. Together, these results reveal that F2RL3 mRNA expression is associated with multiple AD-relevant outcomes and its encoded product, PAR4, may play a role in disease pathogenesis.


Assuntos
Doença de Alzheimer , Expressão Gênica , RNA Mensageiro , Receptores de Trombina , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Receptores de Trombina/genética , Receptores de Trombina/metabolismo , Masculino , Feminino , Idoso de 80 Anos ou mais , RNA Mensageiro/metabolismo , Expressão Gênica/genética , Idoso , Disfunção Cognitiva/genética , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Encéfalo/metabolismo , Cognição , Inflamação/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Fibrinogênio/genética , Fibrinogênio/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Mediadores da Inflamação/metabolismo
6.
J Med Imaging (Bellingham) ; 11(2): 024011, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38655188

RESUMO

Purpose: Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique that provides unique information about white matter microstructure in the brain but is susceptible to confounding effects introduced by scanner or acquisition differences. ComBat is a leading approach for addressing these site biases. However, despite its frequent use for harmonization, ComBat's robustness toward site dissimilarities and overall cohort size have not yet been evaluated in terms of DTI. Approach: As a baseline, we match N=358 participants from two sites to create a "silver standard" that simulates a cohort for multi-site harmonization. Across sites, we harmonize mean fractional anisotropy and mean diffusivity, calculated using participant DTI data, for the regions of interest defined by the JHU EVE-Type III atlas. We bootstrap 10 iterations at 19 levels of total sample size, 10 levels of sample size imbalance between sites, and 6 levels of mean age difference between sites to quantify (i) ßAGE, the linear regression coefficient of the relationship between FA and age; (ii) Î³/f*, the ComBat-estimated site-shift; and (iii) Î´/f*, the ComBat-estimated site-scaling. We characterize the reliability of ComBat by evaluating the root mean squared error in these three metrics and examine if there is a correlation between the reliability of ComBat and a violation of assumptions. Results: ComBat remains well behaved for ßAGE when N>162 and when the mean age difference is less than 4 years. The assumptions of the ComBat model regarding the normality of residual distributions are not violated as the model becomes unstable. Conclusion: Prior to harmonization of DTI data with ComBat, the input cohort should be examined for size and covariate distributions of each site. Direct assessment of residual distributions is less informative on stability than bootstrap analysis. We caution use ComBat of in situations that do not conform to the above thresholds.

7.
Alzheimers Dement ; 20(4): 2906-2921, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460116

RESUMO

INTRODUCTION: Although dementia-related proteinopathy has a strong negative impact on public health, and is highly heritable, understanding of the related genetic architecture is incomplete. METHODS: We applied multidimensional generalized partial credit modeling (GPCM) to test genetic associations with dementia-related proteinopathies. Data were analyzed to identify candidate single nucleotide variants for the following proteinopathies: Aß, tau, α-synuclein, and TDP-43. RESULTS: Final included data comprised 966 participants with neuropathologic and WGS data. Three continuous latent outcomes were constructed, corresponding to TDP-43-, Aß/Tau-, and α-synuclein-related neuropathology endophenotype scores. This approach helped validate known genotype/phenotype associations: for example, TMEM106B and GRN were risk alleles for TDP-43 pathology; and GBA for α-synuclein/Lewy bodies. Novel suggestive proteinopathy-linked alleles were also discovered, including several (SDHAF1, TMEM68, and ARHGEF28) with colocalization analyses and/or high degrees of biologic credibility. DISCUSSION: A novel methodology using GPCM enabled insights into gene candidates for driving misfolded proteinopathies. HIGHLIGHTS: Latent factor scores for proteinopathies were estimated using a generalized partial credit model. The three latent continuous scores corresponded well with proteinopathy severity. Novel genes associated with proteinopathies were identified. Several genes had high degrees of biologic credibility for dementia risk factors.


Assuntos
Doença de Alzheimer , Produtos Biológicos , Demência , Deficiências na Proteostase , Proteinopatias TDP-43 , Humanos , alfa-Sinucleína/genética , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/patologia , Demência/genética , Proteínas de Ligação a DNA , Doença de Alzheimer/patologia , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
8.
Transl Psychiatry ; 14(1): 83, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331937

RESUMO

Changes in high-affinity nicotinic acetylcholine receptors are intricately connected to neuropathology in Alzheimer's Disease (AD). Protective and cognitive-enhancing roles for the nicotinic α5 subunit have been identified, but this gene has not been closely examined in the context of human aging and dementia. Therefore, we investigate the nicotinic α5 gene CHRNA5 and the impact of relevant single nucleotide polymorphisms (SNPs) in prefrontal cortex from 922 individuals with matched genotypic and post-mortem RNA sequencing in the Religious Orders Study and Memory and Aging Project (ROS/MAP). We find that a genotype robustly linked to increased expression of CHRNA5 (rs1979905A2) predicts significantly reduced cortical ß-amyloid load. Intriguingly, co-expression analysis suggests CHRNA5 has a distinct cellular expression profile compared to other nicotinic receptor genes. Consistent with this prediction, single nucleus RNA sequencing from 22 individuals reveals CHRNA5 expression is disproportionately elevated in chandelier neurons, a distinct subtype of inhibitory neuron known for its role in excitatory/inhibitory (E/I) balance. We show that chandelier neurons are enriched in amyloid-binding proteins compared to basket cells, the other major subtype of PVALB-positive interneurons. Consistent with the hypothesis that nicotinic receptors in chandelier cells normally protect against ß-amyloid, cell-type proportion analysis from 549 individuals reveals these neurons show amyloid-associated vulnerability only in individuals with impaired function/trafficking of nicotinic α5-containing receptors due to homozygosity of the missense CHRNA5 SNP (rs16969968A2). Taken together, these findings suggest that CHRNA5 and its nicotinic α5 subunit exert a neuroprotective role in aging and Alzheimer's disease centered on chandelier interneurons.


Assuntos
Doença de Alzheimer , Receptores Nicotínicos , Humanos , Doença de Alzheimer/metabolismo , Receptores Nicotínicos/genética , Nicotina/farmacologia , Neurônios/metabolismo , Peptídeos beta-Amiloides/metabolismo , Envelhecimento/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
9.
ArXiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38344221

RESUMO

Connectivity matrices derived from diffusion MRI (dMRI) provide an interpretable and generalizable way of understanding the human brain connectome. However, dMRI suffers from inter-site and between-scanner variation, which impedes analysis across datasets to improve robustness and reproducibility of results. To evaluate different harmonization approaches on connectivity matrices, we compared graph measures derived from these matrices before and after applying three harmonization techniques: mean shift, ComBat, and CycleGAN. The sample comprises 168 age-matched, sex-matched normal subjects from two studies: the Vanderbilt Memory and Aging Project (VMAP) and the Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD). First, we plotted the graph measures and used coefficient of variation (CoV) and the Mann-Whitney U test to evaluate different methods' effectiveness in removing site effects on the matrices and the derived graph measures. ComBat effectively eliminated site effects for global efficiency and modularity and outperformed the other two methods. However, all methods exhibited poor performance when harmonizing average betweenness centrality. Second, we tested whether our harmonization methods preserved correlations between age and graph measures. All methods except for CycleGAN in one direction improved correlations between age and global efficiency and between age and modularity from insignificant to significant with p-values less than 0.05.

10.
Brain ; 147(6): 2158-2168, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38315899

RESUMO

Vascular dysfunction is increasingly recognized as an important contributor to the pathogenesis of Alzheimer's disease. Alterations in vascular endothelial growth factor (VEGF) pathways have been implicated as potential mechanisms. However, the specific impact of VEGF proteins in preclinical Alzheimer's disease and their relationships with other Alzheimer's disease and vascular pathologies during this critical early period remain to be elucidated. We included 317 older adults from the Harvard Aging Brain Study, a cohort of individuals who were cognitively unimpaired at baseline and followed longitudinally for up to 12 years. Baseline VEGF family protein levels (VEGFA, VEGFC, VEGFD, PGF and FLT1) were measured in fasting plasma using high-sensitivity immunoassays. Using linear mixed effects models, we examined the interactive effects of baseline plasma VEGF proteins and amyloid PET burden (Pittsburgh Compound-B) on longitudinal cognition (Preclinical Alzheimer Cognitive Composite-5). We further investigated if effects on cognition were mediated by early neocortical tau accumulation (flortaucipir PET burden in the inferior temporal cortex) or hippocampal atrophy. Lastly, we examined the impact of adjusting for baseline cardiovascular risk score or white matter hyperintensity volume. Baseline plasma VEGFA and PGF each showed a significant interaction with amyloid burden on prospective cognitive decline. Specifically, low VEGFA and high PGF were associated with greater cognitive decline in individuals with elevated amyloid, i.e. those on the Alzheimer's disease continuum. Concordantly, low VEGFA and high PGF were associated with accelerated longitudinal tau accumulation in those with elevated amyloid. Moderated mediation analyses confirmed that accelerated tau accumulation fully mediated the effects of low VEGFA and partially mediated (31%) the effects of high PGF on faster amyloid-related cognitive decline. The effects of VEGFA and PGF on tau and cognition remained significant after adjusting for cardiovascular risk score or white matter hyperintensity volume. There were concordant but non-significant associations with longitudinal hippocampal atrophy. Together, our findings implicate low VEGFA and high PGF in accelerating early neocortical tau pathology and cognitive decline in preclinical Alzheimer's disease. Additionally, our results underscore the potential of these minimally-invasive plasma biomarkers to inform the risk of Alzheimer's disease progression in the preclinical population. Importantly, VEGFA and PGF appear to capture distinct effects from vascular risks and cerebrovascular injury. This highlights their potential as new therapeutic targets, in combination with anti-amyloid and traditional vascular risk reduction therapies, to slow the trajectory of preclinical Alzheimer's disease and delay or prevent the onset of cognitive decline.


Assuntos
Doença de Alzheimer , Cognição , Fator A de Crescimento do Endotélio Vascular , Proteínas tau , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Masculino , Feminino , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/metabolismo , Idoso , Proteínas tau/metabolismo , Proteínas tau/sangue , Estudos Longitudinais , Idoso de 80 Anos ou mais , Cognição/fisiologia , Tomografia por Emissão de Pósitrons , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/sangue , Biomarcadores/sangue
11.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260300

RESUMO

Alzheimer's disease (AD) is a prevalent and costly age-related dementia. Heritable factors account for 58-79% of variation in late-onset AD, but substantial variation remains in age-of- onset, disease severity, and whether those with high-risk genotypes acquire AD. To emulate the diversity of human populations, we utilized the AD-BXD mouse panel. This genetically diverse resource combines AD genotypes with multiple BXD strains to discover new genetic drivers of AD resilience. Comparing AD-BXD carriers to noncarrier littermates, we computed a novel quantitative metric for resilience to cognitive decline in the AD-BXDs. Our quantitative AD resilience trait was heritable and genetic mapping identified a locus on chr8 associated with resilience to AD mutations that resulted in amyloid brain pathology. Using a hippocampus proteomics dataset, we nominated the mitochondrial glutathione S reductase protein (GR or GSHR) as a resilience factor, finding that the DBA/2J genotype was associated with substantially higher GR abundance. By mapping protein QTLs (pQTLs), we identified synaptic organization and mitochondrial proteins coregulated in trans with a cis-pQTL for GR. We found four coexpression modules correlated with the quantitative resilience score in aged 5XFAD mice using paracliques, which were related to cell structure, protein folding, and postsynaptic densities. Finally, we found significant positive associations between human GSR transcript abundance in the brain and better outcomes on AD-related cognitive and pathology traits in the Religious Orders Study/Memory and Aging project (ROSMAP). Taken together, these data support a framework for resilience in which neuronal antioxidant pathway activity provides for stability of synapses within the hippocampus.

12.
Mol Neurodegener ; 19(1): 1, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172904

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) plays a critical role in microglial activation, survival, and apoptosis, as well as in Alzheimer's disease (AD) pathogenesis. We previously reported the MS4A locus as a key modulator for soluble TREM2 (sTREM2) in cerebrospinal fluid (CSF). To identify additional novel genetic modifiers of sTREM2, we performed the largest genome-wide association study (GWAS) and identified four loci for CSF sTREM2 in 3,350 individuals of European ancestry. Through multi-ethnic fine mapping, we identified two independent missense variants (p.M178V in MS4A4A and p.A112T in MS4A6A) that drive the association in MS4A locus and showed an epistatic effect for sTREM2 levels and AD risk. The novel TREM2 locus on chr 6 contains two rare missense variants (rs75932628 p.R47H, P=7.16×10-19; rs142232675 p.D87N, P=2.71×10-10) associated with sTREM2 and AD risk. The third novel locus in the TGFBR2 and RBMS3 gene region (rs73823326, P=3.86×10-9) included a regulatory variant with a microglia-specific chromatin loop for the promoter of TGFBR2. Using cell-based assays we demonstrate that overexpression and knock-down of TGFBR2, but not RBMS3, leads to significant changes of sTREM2. The last novel locus is located on the APOE region (rs11666329, P=2.52×10-8), but we demonstrated that this signal was independent of APOE genotype. This signal colocalized with cis-eQTL of NECTIN2 in the brain cortex and cis-pQTL of NECTIN2 in CSF. Overexpression of NECTIN2 led to an increase of sTREM2 supporting the genetic findings. To our knowledge, this is the largest study to date aimed at identifying genetic modifiers of CSF sTREM2. This study provided novel insights into the MS4A and TREM2 loci, two well-known AD risk genes, and identified TGFBR2 and NECTIN2 as additional modulators involved in TREM2 biology.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Estudo de Associação Genômica Ampla , Microglia/patologia , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquidiano , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
13.
Neurobiol Aging ; 136: 1-8, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38280312

RESUMO

Enlarged perivascular spaces (ePVS) may adversely affect cognition. Little is known about how basal ganglia ePVS interact with apolipoprotein (APOE)-ε4 status. Vanderbilt Memory and Aging Project participants (n = 326, 73 ± 7, 59% male) underwent 3 T brain MRI at baseline to assess ePVS and longitudinal neuropsychological assessments. The interaction between ePVS volume and APOE-ε4 carrier status was related to baseline outcomes using ordinary least squares regressions and longitudinal cognition using linear mixed-effects regressions. ePVS volume interacted with APOE-ε4 status on cross-sectional naming performance (ß = -0.002, p = 0.002), and executive function excluding outliers (ß = 0.001, p = 0.009). There were no significant longitudinal interactions (p-values>0.10) except for Coding excluding outliers (ß = 0.002, p = 0.05). While cross-sectional models stratified by APOE-ε4 status indicated greater ePVS related to worse cognition mostly in APOE-ε4 carriers, longitudinal models stratified by APOE-ε4 status showed greater ePVS volume related to worse cognition among APOE-ε4 non-carriers only. Results indicated that greater ePVS volume interacts with APOE-ε4 status on cognition cross-sectionally. Longitudinally, the association of greater ePVS volume and worse cognition appears stronger in APOE-ε4 non-carriers, possibly due to the deleterious effects of APOE-ε4 on cognition across the lifespan.


Assuntos
Apolipoproteína E4 , Cognição , Idoso , Feminino , Humanos , Masculino , Apolipoproteína E4/genética , Estudos Transversais , Genótipo , Testes Neuropsicológicos , Idoso de 80 Anos ou mais
14.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050142

RESUMO

ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins. ZCCHC17 knockdown results in widespread RNA-splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4-dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find a significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that the maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.


Assuntos
Doença de Alzheimer , Resiliência Psicológica , Feminino , Humanos , Masculino , Doença de Alzheimer/metabolismo , Cognição , Neurônios/metabolismo , RNA , Splicing de RNA/genética , Proteínas tau/metabolismo
15.
Alzheimers Dement ; 20(2): 1250-1267, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984853

RESUMO

BACKGROUND: Women demonstrate a memory advantage when cognitively healthy yet lose this advantage to men in Alzheimer's disease. However, the genetic underpinnings of this sex difference in memory performance remain unclear. METHODS: We conducted the largest sex-aware genetic study on late-life memory to date (Nmales  = 11,942; Nfemales  = 15,641). Leveraging harmonized memory composite scores from four cohorts of cognitive aging and AD, we performed sex-stratified and sex-interaction genome-wide association studies in 24,216 non-Hispanic White and 3367 non-Hispanic Black participants. RESULTS: We identified three sex-specific loci (rs67099044-CBLN2, rs719070-SCHIP1/IQCJ-SCHIP), including an X-chromosome locus (rs5935633-EGL6/TCEANC/OFD1), that associated with memory. Additionally, we identified heparan sulfate signaling as a sex-specific pathway and found sex-specific genetic correlations between memory and cardiovascular, immune, and education traits. DISCUSSION: This study showed memory is highly and comparably heritable across sexes, as well as highlighted novel sex-specific genes, pathways, and genetic correlations that related to late-life memory. HIGHLIGHTS: Demonstrated the heritable component of late-life memory is similar across sexes. Identified two genetic loci with a sex-interaction with baseline memory. Identified an X-chromosome locus associated with memory decline in females. Highlighted sex-specific candidate genes and pathways associated with memory. Revealed sex-specific shared genetic architecture between memory and complex traits.


Assuntos
Doença de Alzheimer , Envelhecimento Cognitivo , Humanos , Masculino , Feminino , Estudo de Associação Genômica Ampla , Doença de Alzheimer/genética , Cognição , Caracteres Sexuais
16.
Alzheimers Dement ; 20(2): 1268-1283, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985223

RESUMO

INTRODUCTION: Although large-scale genome-wide association studies (GWAS) have been conducted on AD, few have been conducted on continuous measures of memory performance and memory decline. METHODS: We conducted a cross-ancestry GWAS on memory performance (in 27,633 participants) and memory decline (in 22,365 participants; 129,201 observations) by leveraging harmonized cognitive data from four aging cohorts. RESULTS: We found high heritability for two ancestry backgrounds. Further, we found a novel ancestry locus for memory decline on chromosome 4 (rs6848524) and three loci in the non-Hispanic Black ancestry group for memory performance on chromosomes 2 (rs111471504), 7 (rs4142249), and 15 (rs74381744). In our gene-level analysis, we found novel genes for memory decline on chromosomes 1 (SLC25A44), 11 (BSX), and 15 (DPP8). Memory performance and memory decline shared genetic architecture with AD-related traits, neuropsychiatric traits, and autoimmune traits. DISCUSSION: We discovered several novel loci, genes, and genetic correlations associated with late-life memory performance and decline. HIGHLIGHTS: Late-life memory has high heritability that is similar across ancestries. We discovered four novel variants associated with late-life memory. We identified four novel genes associated with late-life memory. Late-life memory shares genetic architecture with psychiatric/autoimmune traits.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla , Endofenótipos , Predisposição Genética para Doença/genética , Cognição , Transtornos da Memória/genética , Polimorfismo de Nucleotídeo Único/genética
17.
J Neuroimaging ; 34(2): 211-216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38148283

RESUMO

BACKGROUND AND PURPOSE: Adverse neurological effects after cancer therapy are common, but biomarkers to diagnose, monitor, or risk stratify patients are still not validated or used clinically. An accessible imaging method, such as fluorodeoxyglucose positron emission tomography (FDG PET) of the brain, could meet this gap and serve as a biomarker for functional brain changes. We utilized FDG PET to evaluate which brain regions are most susceptible to altered glucose metabolism after chemoradiation in patients with head and neck cancer (HNCa). METHODS: Real-world FDG PET images were acquired as standard of care before and after chemoradiation for HNCa in 68 patients. Linear mixed-effects voxelwise models assessed changes after chemoradiation in cerebral glucose metabolism quantified with standardized uptake value ratio (SUVR), covarying for follow-up time and patient demographics. RESULTS: Voxelwise analysis revealed two large clusters of decreased glucose metabolism in the medial frontal and polar temporal cortices following chemoradiation, with decreases of approximately 5% SUVR after therapy. CONCLUSIONS: These findings provide evidence that standard chemoradiation for HNCa can lead to decreased neuronal glucose metabolism, contributing to literature emphasizing the vulnerability of the frontal and anterior temporal lobes, especially in HNCa, where these areas may be particularly vulnerable to indirect radiation-induced injury. FDG PET shows promise as a sensitive biomarker for assessing these changes.


Assuntos
Fluordesoxiglucose F18 , Neoplasias de Cabeça e Pescoço , Humanos , Fluordesoxiglucose F18/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Biomarcadores/metabolismo , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/terapia , Glucose/metabolismo
18.
Pac Symp Biocomput ; 29: 148-162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160276

RESUMO

The greatest known risk factor for Alzheimer's disease (AD) is age. While both normal aging and AD pathology involve structural changes in the brain, their trajectories of atrophy are not the same. Recent developments in artificial intelligence have encouraged studies to leverage neuroimaging-derived measures and deep learning approaches to predict brain age, which has shown promise as a sensitive biomarker in diagnosing and monitoring AD. However, prior efforts primarily involved structural magnetic resonance imaging and conventional diffusion MRI (dMRI) metrics without accounting for partial volume effects. To address this issue, we post-processed our dMRI scans with an advanced free-water (FW) correction technique to compute distinct FW-corrected fractional anisotropy (FAFWcorr) and FW maps that allow for the separation of tissue from fluid in a scan. We built 3 densely connected neural networks from FW-corrected dMRI, T1-weighted MRI, and combined FW+T1 features, respectively, to predict brain age. We then investigated the relationship of actual age and predicted brain ages with cognition. We found that all models accurately predicted actual age in cognitively unimpaired (CU) controls (FW: r=0.66, p=1.62x10-32; T1: r=0.61, p=1.45x10-26, FW+T1: r=0.77, p=6.48x10-50) and distinguished between CU and mild cognitive impairment participants (FW: p=0.006; T1: p=0.048; FW+T1: p=0.003), with FW+T1-derived age showing best performance. Additionally, all predicted brain age models were significantly associated with cross-sectional cognition (memory, FW: ß=-1.094, p=6.32x10-7; T1: ß=-1.331, p=6.52x10-7; FW+T1: ß=-1.476, p=2.53x10-10; executive function, FW: ß=-1.276, p=1.46x10-9; T1: ß=-1.337, p=2.52x10-7; FW+T1: ß=-1.850, p=3.85x10-17) and longitudinal cognition (memory, FW: ß=-0.091, p=4.62x10-11; T1: ß=-0.097, p=1.40x10-8; FW+T1: ß=-0.101, p=1.35x10-11; executive function, FW: ß=-0.125, p=1.20x10-10; T1: ß=-0.163, p=4.25x10-12; FW+T1: ß=-0.158, p=1.65x10-14). Our findings provide evidence that both T1-weighted MRI and dMRI measures improve brain age prediction and support predicted brain age as a sensitive biomarker of cognition and cognitive decline.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Inteligência Artificial , Estudos Transversais , Biologia Computacional , Encéfalo/diagnóstico por imagem , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Biomarcadores
19.
medRxiv ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37961115

RESUMO

Background: Subjective cognitive decline (SCD) may be an early risk factor for dementia, particularly in highly educated individuals and women. This study examined the effect of education and sex on the association between SCD and Alzheimer's disease (AD) biomarkers in non-demented older adults. Method: Vanderbilt Memory and Aging Project participants free of clinical dementia or stroke (n=156, 72±6 years, 37% mild cognitive impairment, 33% female) completed fasting lumbar puncture, SCD assessment, and Wide Range Achievement Test-III Reading subtest to assess reading level at baseline as a a proxy for educational quality. Cerebrospinal fluid (CSF) biomarkers for AD (ß-amyloid 42 (Aß42), Aß42/40 ratio, phosphorylated tau (p-tau), tau, and neurofilament light (NfL)) were analyzed in batch. Linear mixed effects models related SCD to CSF AD biomarkers and follow-up models assessed SCD x sex, SCD x reading level , and SCD x education interactions on AD biomarkers. Result: In main effect models, higher SCD was associated with lower Aß42 and Aß42/40 ratio (p-values<0.004). SCD was not associated with tau, p-tau, or NfL levels ( p- values>0.38). SCD score interacted with sex on Aß42/40 ratio ( p =0.03) but no other biomarkers ( p -values>0.10). In stratified models, higher SCD was associated with lower Aß42/40 ratio in men ( p =0.0003) but not in women ( p =0.48). SCD score interacted with education on Aß42 ( p =0.005) and Aß42/40 ratio ( p =0.001) such that higher education was associated with a stronger negative association between SCD and amyloid levels. No SCD score x reading level interaction was found (p-values> 0.51) though significant associations between SCD and amyloid markers were seen in the higher reading level group (p-values<0.004) but not the lower reading level group (p-values>0.12) when stratified by a median split in reading level. Conclusion: Among community-dwelling older adults free of clinical dementia, higher SCD was associated with greater cerebral amyloid accumulation, one of the earliest pathological AD changes. SCD appears most useful in detecting early AD-related brain changes in men and individuals with higher quantity and quality of education. SCD was not associated with CSF markers of tau pathology or neurodegeneration. These findings suggest that considering sex and education is important when assessing SCD in older adults.

20.
medRxiv ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37961576

RESUMO

INTRODUCTION: Plasma phosphorylated tau181 (p-tau181) associations with global cognition and memory are clear, but the link between p-tau181 with other cognitive domains and subjective cognitive decline (SCD) across the clinical spectrum of Alzheimer's disease (AD) and how this association changes based on genetic and demographic factors is poorly understood. METHODS: Participants were drawn from the Alzheimer's Disease Neuroimaging Initiative and included 1185 adults aged >55 years with plasma p-tau181 and neuropsychological test data. Linear regression models related plasma p-tau181 to neuropsychological composite and SCD scores with follow-up models examining plasma p-tau181 interactions with cognitive diagnosis, APOE ε4 carrier status, age, and sex on cognitive outcomes. RESULTS: Higher plasma p-tau181 was associated with worse memory, executive functioning, and language abilities, and greater informant-reported SCD. Visuospatial abilities and self-report SCD were not associated with plasma p-tau181. Associations were generally stronger in MCI or dementia, APOE ε4 carriers, women, and younger participants. DISCUSSION: Higher levels of plasma p-tau181 are associated with worse neuropsychological test performance across multiple cognitive domains; however, these associations vary based on disease stage, genetic risk status, age, and sex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...