Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 203: 12-21, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34600911

RESUMO

The deterioration of food and feed stuffs and toxic intestinal effects due to fungal colonization and concomitant production of mycotoxins is an increasing concern. The development of fungi resistance to many commonly used chemical preservatives adds further alarm. Therefore, effective detoxification methods would be useful in counteracting this problem. Biotransformation/adsorption of mycotoxins by lactic acid bacteria and their metabolites is a promising approach to minimize the deleterious effects of mycotoxins. The objective of the present study was to evaluate the beneficial effects of Lactobacillus plantarum metabolites in reducing deoxynivalenol intestinal toxicity. To achieve this aim, histological, morphometrical and oxidative stress analyses were performed in the intestinal mucosa of piglets exposed to deoxynivalenol alone or associated with two strains (SN1 and SN2) of L. plantarum subsp. plantarum metabolites. Metabolites were obtained after dichloromethane (D) or ethyl acetate (A) extraction. Jejunal explants were exposed to the following treatments for 2 and 4 h a) culture medium (control group); b) deoxynivalenol (DON, 10 µM); c) L. plantarum metabolites DSN1; d) L. plantarum metabolites DSN1+DON; e) L. plantarum metabolites DSN2; f) L. plantarum metabolites DSN2+DON; g) L. plantarum metabolites ASN1; h) L. plantarum metabolites ASN1+DON; i) L. plantarum metabolites ASN2; j) L. plantarum metabolites ASN2+DON. The metabolites were incubated 1 h previously to DON challenge (one and 3 h of exposure). Histological assessment showed DON-treated explants with villi fusion and atrophy, multifocal apical necrosis and cuboid or flattened enterocytes with 2 and 4 h of exposure, while LP metabolites groups individually or associated with DON remained like control. The density of goblet cells in villi and crypts was reduced in DON explants compared to control group with 2 and 4 h of exposure; on the other hand, a significant increase in this parameter was achieved in LP metabolites groups compared to DON. Morphometric evaluation showed no difference in villi height or crypts depth in any treated explants. Overall, oxidative stress response assessments showed that explants exposed to SN1 extracted with dichloromethane and ethyl acetate, and SN2 extracted with dichloromethane reduced superoxide anion production. In conclusion, L. plantarum metabolites induced beneficial effects in intestinal mucosa, reducing the toxic effects of DON on intestinal morphology and oxidative response.


Assuntos
Lactobacillus plantarum , Micotoxinas , Tricotecenos , Animais , Jejuno , Suínos , Tricotecenos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...