Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Acta Physiol (Oxf) ; : e14197, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958262

RESUMO

AIM: How the cerebral metabolic rates of oxygen and glucose utilization (CMRO2 and CMRGlc, respectively) are affected by alterations in arterial PCO2 (PaCO2) is equivocal and therefore was the primary question of this study. METHODS: This retrospective analysis involved pooled data from four separate studies, involving 41 healthy adults (35 males/6 females). Participants completed stepwise steady-state alterations in PaCO2 ranging between 30 and 60 mmHg. The CMRO2 and CMRGlc were assessed via the Fick approach (CBF × arterial-internal jugular venous difference of oxygen or glucose content, respectively) utilizing duplex ultrasound of the internal carotid artery and vertebral artery to calculate cerebral blood flow (CBF). RESULTS: The CMRO2 was altered by 0.5 mL × min-1 (95% CI: -0.6 to -0.3) per mmHg change in PaCO2 (p < 0.001) which corresponded to a 9.8% (95% CI: -13.2 to -6.5) change in CMRO2 with a 9 mmHg change in PaCO2 (inclusive of hypo- and hypercapnia). The CMRGlc was reduced by 7.7% (95% CI: -15.4 to -0.08, p = 0.045; i.e., reduction in net glucose uptake) and the oxidative glucose index (ratio of oxygen to glucose uptake) was reduced by 5.6% (95% CI: -11.2 to 0.06, p = 0.049) with a + 9 mmHg increase in PaCO2. CONCLUSION: Collectively, the CMRO2 is altered by approximately 1% per mmHg change in PaCO2. Further, glucose is incompletely oxidized during hypercapnia, indicating reductions in CMRO2 are either met by compensatory increases in nonoxidative glucose metabolism or explained by a reduction in total energy production.

2.
J Cereb Blood Flow Metab ; 44(6): 1057-1060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38603610

RESUMO

The near-infrared spectroscopy (NIRS)-derived cerebral oximetry index (COx) has become popularized for non-invasive neuromonitoring of cerebrovascular function in post-cardiac arrest patients with hypoxic-ischemic brain injury (HIBI). We provide commentary on the physiologic underpinnings and assumptions of NIRS and the COx, potential confounds in the context of HIBI, and the implications for the assessment of cerebral autoregulation.


Assuntos
Circulação Cerebrovascular , Homeostase , Oximetria , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Homeostase/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Circulação Cerebrovascular/fisiologia , Oximetria/métodos , Hipóxia-Isquemia Encefálica/fisiopatologia , Encéfalo/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Parada Cardíaca/fisiopatologia
3.
Neurocrit Care ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302643

RESUMO

BACKGROUND: Central nervous system (CNS) injury following initiation of veno-venous extracorporeal membrane oxygenation (VV-ECMO) is common. An acute decrease in partial pressure of arterial carbon dioxide (PaCO2) following VV-ECMO initiation has been suggested as an etiological factor, but the challenges of diagnosing CNS injuries has made discerning a relationship between PaCO2 and CNS injury difficult. METHODS: We conducted a prospective cohort study of adult patients undergoing VV-ECMO for acute respiratory failure. Arterial blood gas measurements were obtained prior to initiation of VV-ECMO, and at every 2-4 h for the first 24 h. Neuroimaging was conducted within the first 7-14 days in patients who were suspected of having neurological injury or unable to be examined because of sedation. We collected blood biospecimens to measure brain biomarkers [neurofilament light (NF-L); glial fibrillary acidic protein (GFAP); and phosphorylated-tau 181] in the first 7 days following initiation of VV-ECMO. We assessed the relationship between both PaCO2 over the first 24 h and brain biomarkers with CNS injury using mixed methods linear regression. Finally, we explored the effects of absolute change of PaCO2 on serum levels of neurological biomarkers by separate mixed methods linear regression for each biomarker using three PaCO2 exposures hypothesized to result in CNS injury. RESULTS: In our cohort, 12 of 59 (20%) patients had overt CNS injury identified on head computed tomography. The PaCO2 decrease with VV-ECMO initiation was steeper in patients who developed a CNS injury (- 0.32%, 95% confidence interval - 0.25 to - 0.39) compared with those without (- 0.18%, 95% confidence interval - 0.14 to - 0.21, P interaction < 0.001). The mean concentration of NF-L increased over time and was higher in those with a CNS injury (464 [739]) compared with those without (127 [257]; P = 0.001). GFAP was higher in those with a CNS injury (4278 [11,653] pg/ml) compared with those without (116 [108] pg/ml; P < 0.001). The mean NF-L, GFAP, and tau over time in patients stratified by the three thresholds of absolute change of PaCO2 showed no differences and had no significant interaction for time. CONCLUSIONS: Although rapid decreases in PaCO2 following initiation of VV-ECMO were slightly greater in patients who had CNS injuries versus those without, data overlap and absence of relationships between PaCO2 and brain biomarkers suggests other pathophysiologic variables are likely at play.

4.
J Physiol ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348606

RESUMO

We examined the extent to which apnoea-induced extremes of oxygen demand/carbon dioxide production impact redox regulation of cerebral bioenergetic function. Ten ultra-elite apnoeists (six men and four women) performed two maximal dry apnoeas preceded by normoxic normoventilation, resulting in severe end-apnoea hypoxaemic hypercapnia, and hyperoxic hyperventilation designed to ablate hypoxaemia, resulting in hyperoxaemic hypercapnia. Transcerebral exchange of ascorbate radicals (by electron paramagnetic resonance spectroscopy) and nitric oxide metabolites (by tri-iodide chemiluminescence) were calculated as the product of global cerebral blood flow (by duplex ultrasound) and radial arterial (a) to internal jugular venous (v) concentration gradients. Apnoea duration increased from 306 ± 62 s during hypoxaemic hypercapnia to 959 ± 201 s in hyperoxaemic hypercapnia (P ≤ 0.001). Apnoea generally increased global cerebral blood flow (all P ≤ 0.001) but was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose (P = 0.015-0.044). This was associated with a general net cerebral output (v > a) of ascorbate radicals that was greater in hypoxaemic hypercapnia (P = 0.046 vs. hyperoxaemic hypercapnia) and coincided with a selective suppression in plasma nitrite uptake (a > v) and global cerebral blood flow (P = 0.034 to <0.001 vs. hyperoxaemic hypercapnia), implying reduced consumption and delivery of nitric oxide consistent with elevated cerebral oxidative-nitrosative stress. In contrast, we failed to observe equidirectional gradients consistent with S-nitrosohaemoglobin consumption and plasma S-nitrosothiol delivery during apnoea (all P ≥ 0.05). Collectively, these findings highlight a key catalytic role for hypoxaemic hypercapnia in cerebral oxidative-nitrosative stress. KEY POINTS: Local sampling of blood across the cerebral circulation in ultra-elite apnoeists determined the extent to which severe end-apnoea hypoxaemic hypercapnia (prior normoxic normoventilation) and hyperoxaemic hypercapnia (prior hyperoxic hyperventilation) impact free radical-mediated nitric oxide bioavailability and global cerebral bioenergetic function. Apnoea generally increased the net cerebral output of free radicals and suppressed plasma nitrite consumption, thereby reducing delivery of nitric oxide consistent with elevated oxidative-nitrosative stress. The apnoea-induced elevation in global cerebral blood flow was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose. Cerebral oxidative-nitrosative stress was greater during hypoxaemic hypercapnia compared with hyperoxaemic hypercapnia and coincided with a lower apnoea-induced elevation in global cerebral blood flow, highlighting a key catalytic role for hypoxaemia. This applied model of voluntary human asphyxia might have broader implications for the management and treatment of neurological diseases characterized by extremes of oxygen demand and carbon dioxide production.

5.
Crit Care Explor ; 6(2): e1049, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38352943

RESUMO

OBJECTIVES: Near-infrared spectroscopy (NIRS) is used in critical care settings to measure regional cerebral tissue oxygenation (rSo2). However, the accuracy of such measurements has been questioned in darker-skinned individuals due to the confounding effects of light absorption by melanin. In this systematic review, we aim to synthesize the available evidence on the effect of skin pigmentation on rSo2 readings. DATA SOURCES: We systematically searched MEDLINE, Cochrane Database of Systematic Reviews, Embase, and Google Scholar from inception to July 1, 2023. STUDY SELECTION: In compliance with our PROSPERO registration (CRD42022347548), we selected articles comparing rSo2 measurements in adults either between racial groups or at different levels of skin pigmentation. Two independent reviewers conducted full-text reviews of all potentially relevant articles. DATA EXTRACTION: We extracted data on self-reported race or level of skin pigmentation and mean rSo2 values. DATA SYNTHESIS: Of the 11,495 unique records screened, two studies (n = 7,549) met our inclusion criteria for systematic review. Sun et al (2015) yielded significantly lower rSo2 values for African Americans compared with Caucasians, whereas Stannard et al (2021) found little difference between self-reported racial groups. This discrepancy is likely because Stannard et al (2021) used a NIRS platform which specifically purports to control for the effects of melanin. Several other studies that did not meet our inclusion criteria corroborated the notion that skin pigmentation results in lower rSo2 readings. CONCLUSIONS: Skin pigmentation likely results in attenuated rSo2 readings. However, the magnitude of this effect may depend on the specific NIRS platform used.

6.
J Physiol ; 601(24): 5601-5616, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37975212

RESUMO

Passive hyperthermia causes cerebral hypoperfusion primarily from heat-induced respiratory alkalosis. However, despite the cerebral hypoperfusion, it is possible that the mild alkalosis might help to attenuate cerebral inflammation. In this study, the cerebral exchange of extracellular vesicles (microvesicles), which are known to elicit pro-inflammatory responses when released in conditions of stress, were examined in hyperthermia with and without respiratory alkalosis. Ten healthy male adults were heated passively, using a warm water-perfused suit, up to core temperature + 2°C. Blood samples were taken from the radial artery and internal jugular bulb. Microvesicle concentrations were determined in platelet-poor plasma via cells expressing CD62E (activated endothelial cells), CD31+ /CD42b- (apoptotic endothelial cells), CD14 (monocytes) and CD45 (pan-leucocytes). Cerebral blood flow was measured via duplex ultrasound of the internal carotid and vertebral arteries to determine cerebral exchange kinetics. From baseline to poikilocapnic (alkalotic) hyperthermia, there was no change in microvesicle concentration from any cell origin measured (P-values all >0.05). However, when blood CO2 tension was normalized to baseline levels in hyperthermia, there was a marked increase in cerebral uptake of microvesicles expressing CD62E (P = 0.028), CD31+ /CD42b- (P = 0.003) and CD14 (P = 0.031) compared with baseline, corresponding to large increases in arterial but not jugular venous concentrations. In a subset of seven participants who underwent hypercapnia and hypocapnia in the absence of heating, there was no change in microvesicle concentrations or cerebral exchange, suggesting that hyperthermia potentiated the CO2 /pH-mediated cerebral uptake of microvesicles. These data provide insight into a potential beneficial role of respiratory alkalosis in heat stress. KEY POINTS: The hyperthermia-induced hyperventilatory response is observed in most humans, despite causing potentially harmful reductions in cerebral blood flow. We tested the hypothesis that the respiratory-induced alkalosis is associated with lower circulating microvesicle concentrations, specifically in the brain, despite the reductions in blood flow. At core temperature + 2°C with respiratory alkalosis, microvesicles derived from endothelial cells, monocytes and leucocytes were at concentrations similar to baseline in the arterial and cerebral venous circulation, with no changes in cross-brain microvesicle kinetics. However, when core temperature was increased by 2°C with CO2 /pH normalized to resting levels, there was a marked cerebral uptake of microvesicles derived from endothelial cells and monocytes. The CO2 /pH-mediated alteration in cerebral microvesicle uptake occurred only in hyperthermia. These new findings suggest that the heat-induced hyperventilatory response might serve a beneficial role by preventing potentially inflammatory microvesicle uptake in the brain.


Assuntos
Alcalose Respiratória , Hipertermia Induzida , Adulto , Humanos , Masculino , Hipocapnia , Células Endoteliais/fisiologia , Dióxido de Carbono , Hiperventilação , Circulação Cerebrovascular/fisiologia
7.
J Physiol ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655827

RESUMO

The cerebral vasculature manages oxygen delivery by adjusting arterial blood in-flow in the face of reductions in oxygen availability. Hypoxic cerebral vasodilatation, and the associated hypoxic cerebral blood flow reactivity, involve many vascular, erythrocytic and cerebral tissue mechanisms that mediate elevations in cerebral blood flow via micro- and macrovascular dilatation. This contemporary review focuses on in vivo human work - with reference to seminal preclinical work where necessary - on hypoxic cerebrovascular reactivity, particularly where recent advancements have been made. We provide updates with the following information: in humans, hypoxic cerebral vasodilatation is partially mediated via a - likely non-obligatory - combination of: (1) nitric oxide synthases, (2) deoxygenation-coupled S-nitrosothiols, (3) potassium channel-related vascular smooth muscle hyperpolarization, and (4) prostaglandin mechanisms with some contribution from an interrelationship with reactive oxygen species. And finally, we discuss the fact that, due to the engagement of deoxyhaemoglobin-related mechanisms, reductions in O2 content via haemoglobin per se seem to account for ∼50% of that seen with hypoxic cerebral vasodilatation during hypoxaemia. We further highlight the issue that methodological impediments challenge the complete elucidation of hypoxic cerebral reactivity mechanisms in vivo in healthy humans. Future research is needed to confirm recent advancements and to reconcile human and animal findings. Further investigations are also required to extend these findings to address questions of sex-, heredity-, age-, and disease-related differences. The final step is to then ultimately translate understanding of these mechanisms into actionable, targetable pathways for the prevention and treatment of cerebral vascular dysfunction and cerebral hypoxic brain injury.

8.
Minerva Anestesiol ; 89(9): 824-833, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37676177

RESUMO

Following resuscitation from cardiac arrest, hypoxic ischemic brain injury (HIBI) ensues, which is the primary determinant of adverse outcome. The pathophysiology of HIBI can be compartmentalized into primary and secondary injury, resulting from cerebral ischemia during cardiac arrest and reperfusion following successful resuscitation, respectively. During the secondary injury phase, increased attention has been directed towards the optimization of cerebral oxygen delivery to prevent additive injury to the brain. During this phase, cerebral hemodynamics are characterized by early hyperemia following resuscitation and then a protracted phase of cerebral hypoperfusion termed "no-reflow" during which additional hypoxic-ischemic injury can occur. As such, identification of therapeutic strategies to optimize cerebral delivery of oxygen is at the forefront of HIBI research. Unfortunately, randomized control trials investigating the manipulation of arterial carbon dioxide tension and mean arterial pressure augmentation as methods to potentially improve cerebral oxygen delivery have shown no impact on clinical outcomes. Emerging literature suggests differential patient-specific phenotypes may exist in patients with HIBI. The potential to personalize therapeutic strategies in the critical care setting based upon patient-specific pathophysiology presents an attractive strategy to improve HIBI outcomes. Herein, we review the cerebral hemodynamic pathophysiology of HIBI, discuss patient phenotypes as it pertains to personalizing care, as well as suggest future directions.


Assuntos
Parada Cardíaca , Humanos , Parada Cardíaca/terapia , Encéfalo , Cuidados Críticos , Hemodinâmica , Oxigênio
9.
J Physiol ; 601(19): 4251-4262, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37635691

RESUMO

We examined two assumptions of the modified rebreathing technique for the assessment of the ventilatory central chemoreflex (CCR) and cerebrovascular CO2 reactivity (CVR), hypothesizing: (1) that rebreathing abolishes the gradient between the partial pressures of arterial and brain tissue CO2 [measured via the surrogate jugular venous P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ and arterial P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ difference (Pjv-a CO2 )] and (2) rebreathing eliminates the capacity of CVR to influence the Pjv-a CO2 difference, and thus affect CCR sensitivity. We also evaluated these variables during two separate dynamic end-tidal forcing (ETF) protocols (termed: ETF-1 and ETF-2), another method of assessing CCR sensitivity and CVR. Healthy participants were included in the rebreathing (n = 9), ETF-1 (n = 11) and ETF-2 (n = 10) protocols and underwent radial artery and internal jugular vein (advanced to jugular bulb) catheterization to collect blood samples. Transcranial Doppler ultrasound was used to measure middle cerebral artery blood velocity (MCAv). The Pjv-a CO2 difference was not abolished during rebreathing (6.2 ± 2.6 mmHg; P < 0.001), ETF-1 (9.3 ± 1.5 mmHg; P < 0.001) or ETF-2 (8.6 ± 1.4 mmHg; P < 0.001). The Pjv-a CO2 difference did not change during the rebreathing protocol (-0.1 ± 1.2 mmHg; P = 0.83), but was reduced during the ETF-1 (-3.9 ± 1.1 mmHg; P < 0.001) and ETF-2 (-3.4 ± 1.2 mmHg; P = 0.001) protocols. Overall, increases in MCAv were associated with reductions in the Pjv-a CO2 difference during ETF (-0.095 ± 0.089 mmHg cm-1  s-1 ; P = 0.001) but not during rebreathing (-0.028 ± 0.045 mmHg · cm-1  · s-1 ; P = 0.067). These findings suggest that, although the Pjv-a CO2 is not abolished during any chemoreflex assessment technique, hyperoxic hypercapnic rebreathing is probably more appropriate to assess CCR sensitivity independent of cerebrovascular reactivity to CO2 . KEY POINTS: Modified rebreathing is a technique used to assess the ventilatory central chemoreflex and is based on the premise that the rebreathing method eliminates the difference between arterial and brain tissue P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ . Therefore, rebreathing is assumed to isolate the ventilatory response to central chemoreflex stimulation from the influence of cerebral blood flow. We assessed these assumptions by measuring arterial and jugular venous bulb P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ and middle cerebral artery blood velocity during modified rebreathing and compared these data against data from another test of the ventilatory central chemoreflex using hypercapnic dynamic end-tidal forcing. The difference between arterial and jugular venous bulb P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ remained present during both rebreathing and end-tidal forcing tests, whereas middle cerebral artery blood velocity was associated with the P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ difference during end-tidal forcing but not rebreathing. These findings offer substantiating evidence that clarifies and refines the assumptions of modified rebreathing tests, enhancing interpretation of future findings.


Assuntos
Dióxido de Carbono , Veias Jugulares , Humanos , Hipercapnia , Artéria Cerebral Média/fisiologia , Circulação Cerebrovascular/fisiologia
10.
J Physiol ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37639379

RESUMO

Hypoxic ischaemic brain injury after resuscitation from cardiac arrest is associated with dismal clinical outcomes. To date, most clinical interventions have been geared towards the restoration of cerebral oxygen delivery after resuscitation; however, outcomes in clinical trials are disappointing. Therefore, alternative disease mechanism(s) are likely to be at play, of which the response of the innate immune system to sterile injured tissue in vivo after reperfusion has garnered significant interest. The innate immune system is composed of three pillars: (i) cytokines and signalling molecules; (ii) leucocyte migration and activation; and (iii) the complement cascade. In animal models of hypoxic ischaemic brain injury, pro-inflammatory cytokines are central to propagation of the response of the innate immune system to cerebral ischaemia-reperfusion. In particular, interleukin-1 beta and downstream signalling can result in direct neural injury that culminates in cell death, termed pyroptosis. Leucocyte chemotaxis and activation are central to the in vivo response to cerebral ischaemia-reperfusion. Both parenchymal microglial activation and possible infiltration of peripherally circulating monocytes might account for exacerbation of an immunopathological response in humans. Finally, activation of the complement cascade intersects with multiple aspects of the innate immune response by facilitating leucocyte activation, further cytokine release and endothelial activation. To date, large studies of immunomodulatory therapies have not been conducted; however, lessons learned from historical studies using therapeutic hypothermia in humans suggest that quelling an immunopathological response might be efficacious. Future work should delineate the precise pathways involved in vivo in humans to target specific signalling molecules.

11.
Intensive Care Med ; 49(9): 1062-1078, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507572

RESUMO

The cerebral oxygen cascade includes three key stages: (a) convective oxygen delivery representing the bulk flow of oxygen to the cerebral vascular bed; (b) diffusion of oxygen from the blood into brain tissue; and (c) cellular utilisation of oxygen for aerobic metabolism. All three stages may become dysfunctional after resuscitation from cardiac arrest and contribute to hypoxic-ischaemic brain injury (HIBI). Improving convective cerebral oxygen delivery by optimising cerebral blood flow has been widely investigated as a strategy to mitigate HIBI. However, clinical trials aimed at optimising convective oxygen delivery have yielded neutral results. Advances in the understanding of HIBI pathophysiology suggest that impairments in the stages of the oxygen cascade pertaining to oxygen diffusion and cellular utilisation of oxygen should also be considered in identifying therapeutic strategies for the clinical management of HIBI patients. Culprit mechanisms for these impairments may include a widening of the diffusion barrier due to peri-vascular oedema and mitochondrial dysfunction. An integrated approach encompassing both intra-parenchymal and non-invasive neuromonitoring techniques may aid in detecting pathophysiologic changes in the oxygen cascade and enable patient-specific management aimed at reducing the severity of HIBI.


Assuntos
Lesões Encefálicas , Parada Cardíaca , Hipóxia-Isquemia Encefálica , Humanos , Oxigênio , Encéfalo , Hipóxia-Isquemia Encefálica/terapia , Parada Cardíaca/complicações , Parada Cardíaca/terapia , Circulação Cerebrovascular/fisiologia , Lesões Encefálicas/metabolismo
12.
J Cereb Blood Flow Metab ; 43(9): 1519-1531, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37042194

RESUMO

Cerebral hypoxic vasodilation is poorly understood in humans, which undermines the development of therapeutics to optimize cerebral oxygen delivery. Across four investigations (total n = 195) we investigated the role of nitric oxide (NO) and hemoglobin-based S-nitrosothiol (RSNO) and nitrite (NO2-) signaling in the regulation of cerebral hypoxic vasodilation. We conducted hemodilution (n = 10) and NO synthase inhibition experiments (n = 11) as well as hemoglobin oxygen desaturation protocols, wherein we measured cerebral blood flow (CBF), intra-arterial blood pressure, and in subsets of participants trans-cerebral release/uptake of RSNO and NO2-. Higher CBF during hypoxia was associated with greater trans-cerebral RSNO release but not NO2-, while NO synthase inhibition reduced cerebral hypoxic vasodilation. Hemodilution increased the magnitude of cerebral hypoxic vasodilation following acute hemodilution, while in 134 participants tested under normal conditions, hypoxic cerebral vasodilation was inversely correlated to arterial hemoglobin concentration. These studies were replicated in a sample of polycythemic high-altitude native Andeans suffering from excessive erythrocytosis (n = 40), where cerebral hypoxic vasodilation was inversely correlated to hemoglobin concentration, and improved with hemodilution (n = 6). Collectively, our data indicate that cerebral hypoxic vasodilation is partially NO-dependent, associated with trans-cerebral RSNO release, and place hemoglobin-based NO signaling as a central mechanism of cerebral hypoxic vasodilation in humans.


Assuntos
Óxido Nítrico , S-Nitrosotióis , Humanos , Óxido Nítrico/metabolismo , Vasodilatação/fisiologia , Hipóxia , Hemoglobinas/metabolismo , Transdução de Sinais/fisiologia , Oxigênio/metabolismo
13.
J Cereb Blood Flow Metab ; 43(7): 1166-1179, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36883428

RESUMO

Cerebral blood flow (CBF) increases during hypoxia to counteract the reduction in arterial oxygen content. The onset of tissue hypoxemia coincides with the stabilization of hypoxia-inducible factor (HIF) and transcription of downstream HIF-mediated processes. It has yet to be determined, whether HIF down- or upregulation can modulate hypoxic vasodilation of the cerebral vasculature. Therefore, we examined whether: 1) CBF would increase with iron depletion (via chelation) and decrease with repletion (via iron infusion) at high-altitude, and 2) explore whether genotypic advantages of highlanders extend to HIF-mediated regulation of CBF. In a double-blinded and block-randomized design, CBF was assessed in 82 healthy participants (38 lowlanders, 20 Sherpas and 24 Andeans), before and after the infusion of either: iron(III)-hydroxide sucrose, desferrioxamine or saline. Across both lowlanders and highlanders, baseline iron levels contributed to the variability in cerebral hypoxic reactivity at high altitude (R2 = 0.174, P < 0.001). At 5,050 m, CBF in lowlanders and Sherpa were unaltered by desferrioxamine or iron. At 4,300 m, iron infusion led to 4 ± 10% reduction in CBF (main effect of time p = 0.043) in lowlanders and Andeans. Iron status may provide a novel, albeit subtle, influence on CBF that is potentially dependent on the severity and length-of-stay at high altitude.


Assuntos
Doença da Altitude , Altitude , Humanos , Aclimatação/fisiologia , Desferroxamina , Compostos Férricos , Hipóxia , Circulação Cerebrovascular
14.
High Alt Med Biol ; 24(1): 27-36, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36940101

RESUMO

Vizcardo-Galindo, Gustavo A., Connor A. Howe, Ryan L. Hoiland, Howard H. Carter, Christopher K. Willie, Philip N. Ainslie, and Joshua C. Tremblay. Impact of oxygen supplementation on brachial artery hemodynamics and vascular function during ascent to 5,050 m. High Alt Med Biol. 24:27-36, 2023.-High-altitude trekking alters upper limb hemodynamics and reduces brachial artery vascular function in lowlanders. Whether these changes are reversible with the removal of hypoxia is unknown. We investigated the impact of 20 minutes of oxygen supplementation (O2) on brachial artery hemodynamics, reactive hyperemia (RH; microvascular function), and flow-mediated dilation (FMD; endothelial function). Participants (aged 21-42 years) were examined before and with O2 at 3,440 m (n = 7), 4,371 m (n = 7), and 5,050 m (n = 12) using Duplex ultrasound (days 4, 7, and 10 respectively). At 3,440 m, O2 decreased brachial artery diameter (-5% ± 5%; p = 0.04), baseline blood flow (-44% ± 15%; p < 0.001), oxygen delivery (-39 ± 16; p < 0.001), and peak RH (-8% ± 8%; p = 0.02), but not RH normalized for baseline blood flow. Elevated FMD (p = 0.04) with O2 at 3,440 m was attributed to the reduction in baseline diameter. At 5,050 m, a reduction in brachial artery blood flow (-17% ± 22%; p = 0.03), but not oxygen delivery, diameter, RH, or FMD occurred with O2. These findings suggest that during early trekking at high altitude, O2 causes vasoconstriction in the upper limb along the arterial tree (conduit and resistance arteries). With incremental high-altitude exposure, O2 reduces blood flow without compromising oxygen delivery, RH, or FMD, suggesting a differential impact on vascular function modulated by the duration and severity of high-altitude exposure.


Assuntos
Artéria Braquial , Oxigênio , Humanos , Artéria Braquial/fisiologia , Hemodinâmica , Extremidade Superior , Oxigenoterapia , Vasodilatação/fisiologia , Endotélio Vascular/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia
15.
J Physiol ; 601(6): 1095-1120, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36633375

RESUMO

High-altitude (HA) hypoxia may alter the structural-functional integrity of the neurovascular unit (NVU). Herein, we compared male lowlanders (n = 9) at sea level (SL) and after 14 days acclimatization to 4300 m (chronic HA) in Cerro de Pasco (CdP), Péru (HA), against sex-, age- and body mass index-matched healthy highlanders (n = 9) native to CdP (lifelong HA). Venous blood was assayed for serum proteins reflecting NVU integrity, in addition to free radicals and nitric oxide (NO). Regional cerebral blood flow (CBF) was examined in conjunction with cerebral substrate delivery, dynamic cerebral autoregulation (dCA), cerebrovascular reactivity to carbon dioxide (CVRCO2 ) and neurovascular coupling (NVC). Psychomotor tests were employed to examine cognitive function. Compared to lowlanders at SL, highlanders exhibited elevated basal plasma and red blood cell NO bioavailability, improved anterior and posterior dCA, elevated anterior CVRCO2 and preserved cerebral substrate delivery, NVC and cognition. In highlanders, S100B, neurofilament light-chain (NF-L) and T-tau were consistently lower and cognition comparable to lowlanders following chronic-HA. These findings highlight novel integrated adaptations towards regulation of the NVU in highlanders that may represent a neuroprotective phenotype underpinning successful adaptation to the lifelong stress of HA hypoxia. KEY POINTS: High-altitude (HA) hypoxia has the potential to alter the structural-functional integrity of the neurovascular unit (NVU) in humans. For the first time, we examined to what extent chronic and lifelong hypoxia impacts multimodal biomarkers reflecting NVU structure and function in lowlanders and native Andean highlanders. Despite lowlanders presenting with a reduction in systemic oxidative-nitrosative stress and maintained cerebral bioenergetics and cerebrovascular function during chronic hypoxia, there was evidence for increased axonal injury and cognitive impairment. Compared to lowlanders at sea level, highlanders exhibited elevated vascular NO bioavailability, improved dynamic regulatory capacity and cerebrovascular reactivity, comparable cerebral substrate delivery and neurovascular coupling, and maintained cognition. Unlike lowlanders following chronic HA, highlanders presented with lower concentrations of S100B, neurofilament light chain and total tau. These findings highlight novel integrated adaptations towards the regulation of the NVU in highlanders that may represent a neuroprotective phenotype underpinning successful adaptation to the lifelong stress of HA hypoxia.


Assuntos
Doença da Altitude , Humanos , Masculino , Dióxido de Carbono , Altitude , Hipóxia , Aclimatação/fisiologia , Oxirredução , Óxido Nítrico , Homeostase
16.
J Cereb Blood Flow Metab ; 43(1): 99-114, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36131560

RESUMO

This study investigated the influence of acute reductions in arterial O2 content (CaO2) via isovolumic haemodilution on global cerebral blood flow (gCBF) and cerebrovascular CO2 reactivity (CVR) in 11 healthy males (age; 28 ± 7 years: body mass index; 23 ± 2 kg/m2). Radial artery and internal jugular vein catheters provided measurement of blood pressure and gases, quantification of cerebral metabolism, cerebral CO2 washout, and trans-cerebral nitrite exchange (ozone based chemiluminescence). Prior to and following haemodilution, the partial pressure of arterial CO2 (PaCO2) was elevated with dynamic end-tidal forcing while gCBF was measured with duplex ultrasound. CVR was determined as the slope of the gCBF response and PaCO2. Replacement of ∼20% of blood volume with an equal volume of 5% human serum albumin (Alburex® 5%) reduced haemoglobin (13.8 ± 0.8 vs. 11.3 ± 0.6 g/dL; P < 0.001) and CaO2 (18.9 ± 1.0 vs 15.0 ± 0.8 mL/dL P < 0.001), elevated gCBF (+18 ± 11%; P = 0.002), preserved cerebral oxygen delivery (P = 0.49), and elevated CO2 washout (+11%; P = 0.01). The net cerebral uptake of nitrite (11.6 ± 14.0 nmol/min; P = 0.027) at baseline was abolished following haemodilution (-3.6 ± 17.9 nmol/min; P = 0.54), perhaps underpinning the conservation of CVR (61.7 ± 19.0 vs. 69.0 ± 19.2 mL/min/mmHg; P = 0.23). These findings demonstrate that the cerebrovascular responses to acute anaemia in healthy humans are sufficient to support the maintenance of CVR.


Assuntos
Dióxido de Carbono , Nível de Saúde , Humanos
17.
Front Immunol ; 13: 1010216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451808

RESUMO

The COVID-19 pandemic continues to challenge the capacities of hospital ICUs which currently lack the ability to identify prospectively those patients who may require extended management. In this study of 90 ICU COVID-19 patients, we evaluated serum levels of four cytokines (IL-1ß, IL-6, IL-10 and TNFα) as well as standard clinical and laboratory measurements. On 42 of these patients (binned into Initial and Replication Cohorts), we further performed CyTOF-based deep immunophenotyping of peripheral blood mononuclear cells with a panel of 38 antibodies. All measurements and patient samples were taken at time of ICU admission and retrospectively linked to patient clinical outcomes through statistical approaches. These analyses resulted in the definition of a new measure of patient clinical outcome: patients who will recover after short ICU stays (< 6 days) and those who will subsequently die or recover after long ICU stays (≥6 days). Based on these clinical outcome categories, we identified blood prognostic biomarkers that, at time of ICU admission, prospectively distinguish, with 91% sensitivity and 91% specificity (positive likelihood ratio 10.1), patients in the two clinical outcome groups. This is achieved through a tiered evaluation of serum IL-10 and targeted immunophenotyping of monocyte subsets, specifically, CD11clow classical monocytes. Both immune biomarkers were consistently elevated ( ≥15 pg/ml and ≥2.7 x107/L for serum IL-10 and CD11clow classical monocytes, respectively) in those patients who will subsequently die or recover after long ICU stays. This highly sensitive and specific prognostic test could prove useful in guiding clinical resource allocation.


Assuntos
COVID-19 , Humanos , Interleucina-10 , Leucócitos Mononucleares , Pandemias , Prognóstico , Estudos Retrospectivos , Antígeno CD11c , Unidades de Terapia Intensiva
18.
Exp Physiol ; 107(12): 1440-1453, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36114662

RESUMO

NEW FINDINGS: What is the central question of this study? What are the contributions of shear stress and adrenergic tone to brachial artery vasodilatation during hypercapnia? What is the main finding and its importance? In healthy young adults, shear-mediated vasodilatation does not occur in the brachial artery during hypercapnia, as elevated α1-adrenergic activity typically maintains vascular tone and offsets distal vasodilatation controlling flow. ABSTRACT: We aimed to assess the shear stress dependency of brachial artery (BA) responses to hypercapnia, and the α1-adrenergic restraint of these responses. We hypothesized that elevated shear stress during hypercapnia would cause BA vasodilatation, but where shear stress was prohibited (via arterial compression), the BA would not vasodilate (study 1); and, in the absence of α1-adrenergic activity, blood flow, shear stress and BA vasodilatation would increase (study 2). In study 1, 14 healthy adults (7/7 male/female, 27 ± 4 years) underwent bilateral BA duplex ultrasound during hypercapnia (partial pressure of end-tidal carbon dioxide, +10.2 ± 0.3 mmHg above baseline, 12 min) via dynamic end-tidal forcing, and shear stress was reduced in one BA using manual compression (compression vs. control arm). Neither diameter nor blood flow was different between baseline and the last minute of hypercapnia (P = 0.423, P = 0.363, respectively) in either arm. The change values from baseline to the last minute, in diameter (%; P = 0.201), flow (ml/min; P = 0.234) and conductance (ml/min/mmHg; P = 0.503) were not different between arms. In study 2, 12 healthy adults (9/3 male/female, 26 ± 4 years) underwent the same design with and without α1-adrenergic receptor blockade (prazosin; 0.05 mg/kg) in a placebo-controlled, double-blind and randomized design. BA flow, conductance and shear rate increased during hypercapnia in the prazosin control arm (interaction, P < 0.001), but in neither arm during placebo. Even in the absence of α1-adrenergic restraint, downstream vasodilatation in the microvasculature during hypercapnia is insufficient to cause shear-mediated vasodilatation in the BA.


Assuntos
Artéria Braquial , Hipercapnia , Adulto Jovem , Humanos , Feminino , Masculino , Artéria Braquial/fisiologia , Adrenérgicos , Fluxo Sanguíneo Regional/fisiologia , Vasodilatação/fisiologia , Prazosina , Velocidade do Fluxo Sanguíneo/fisiologia
19.
J Physiol ; 600(22): 4779-4806, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36121759

RESUMO

The assessment of left ventricular (LV) contractility in animal models is useful in various experimental paradigms, yet obtaining such measures is inherently challenging and surgically invasive. In a cross-species study using small and large animals, we comprehensively tested the agreement and validity of multiple single-beat surrogate metrics of LV contractility against the field-standard metrics derived from inferior vena cava occlusion (IVCO). Fifty-six rats, 27 minipigs and 11 conscious dogs underwent LV and arterial catheterization and were assessed for a range of single-beat metrics of LV contractility. All single-beat metrics were tested for the various underlying assumptions required to be considered a valid metric of cardiac contractility, including load-independency, sensitivity to inotropic stimulation, and ability to diagnose contractile dysfunction in cardiac disease. Of all examined single-beat metrics, only LV maximal pressure normalized to end-diastolic volume (EDV), end-systolic pressure normalized to EDV, and the maximal rate of rise of the LV pressure normalized to EDV showed a moderate-to-excellent agreement with their IVCO-derived reference measure and met all the underlying assumptions required to be considered as a valid cardiac contractile metric in both rodents and large-animal models. Our findings demonstrate that single-beat metrics can be used as a valid, reliable method to quantify cardiac contractile function in basic/preclinical experiments utilizing small- and large-animal models KEY POINTS: Validating and comparing indices of cardiac contractility that avoid caval occlusion would offer considerable advantages for the field of cardiovascular physiology. We comprehensively test the underlying assumptions of multiple single-beat indices of cardiac contractility in rodents and translate these findings to pigs and conscious dogs. We show that when performing caval occlusion is unfeasible, single-beat metrics can be utilized to accurately quantify cardiac inotropic function in basic and preclinical research employing various small and large animal species. We report that maximal left-ventricular (LV)-pressure normalized to end-diastolic volume (EDV), LV end-systolic pressure normalized to EDV and the maximal rate of rise of the LV pressure waveform normalized to EDV are the best three single-beat metrics to measure cardiac inotropic function in both small- and large-animal models.


Assuntos
Benchmarking , Função Ventricular Esquerda , Animais , Cães , Ratos , Suínos , Função Ventricular Esquerda/fisiologia , Porco Miniatura , Contração Miocárdica/fisiologia , Ventrículos do Coração , Volume Sistólico/fisiologia
20.
JAMA Neurol ; 79(4): 390-398, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35226054

RESUMO

IMPORTANCE: Brain injury biomarkers released into circulation from the injured neurovascular unit are important prognostic tools in patients with cardiac arrest who develop hypoxic ischemic brain injury (HIBI) after return of spontaneous circulation (ROSC). OBJECTIVE: To assess the neuroprognostic utility of bloodborne brain injury biomarkers in patients with cardiac arrest with HIBI. DATA SOURCES: Studies in electronic databases from inception to September 15, 2021. These databases included MEDLINE, Embase, Evidence-Based Medicine Reviews, CINAHL, Cochrane Database of Systematic Reviews, and the World Health Organization Global Health Library. STUDY SELECTION: Articles included in this systmatic review and meta-analysis were independently assessed by 2 reviewers. We included studies that investigated neuron-specific enolase, S100 calcium-binding protein ß, glial fibrillary acidic protein, neurofilament light, tau, or ubiquitin carboxyl hydrolase L1 in patients with cardiac arrest aged 18 years and older for neurologic prognostication. We excluded studies that did not (1) dichotomize neurologic outcome as favorable vs unfavorable, (2) specify the timing of blood sampling or outcome determination, or (3) report diagnostic test accuracy or biomarker concentration. DATA EXTRACTION AND SYNTHESIS: Data on the study design, inclusion and exclusion criteria, brain biomarkers levels, diagnostic test accuracy, and neurologic outcome were recorded. This study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. MAIN OUTCOMES AND MEASURES: Summary receiver operating characteristic curve analysis was used to calculate the area under the curve, sensitivity, specificity, and optimal thresholds for each biomarker. Risk of bias and concerns of applicability were assessed with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. RESULTS: We identified 2953 studies, of which 86 studies with 10 567 patients (7777 men [73.6] and 2790 women [26.4]; pooled mean [SD] age, 62.8 [10.2] years) were included. Biomarker analysis at 48 hours after ROSC demonstrated that neurofilament light had the highest predictive value for unfavorable neurologic outcome, with an area under the curve of 0.92 (95% CI, 0.84-0.97). Subgroup analyses of patients treated with targeted temperature management and those who specifically had an out-of-hospital cardiac arrest showed similar results (targeted temperature management, 0.92 [95% CI, 0.86-0.95] and out-of-hospital cardiac arrest, 0.93 [95% CI, 0.86-0.97]). CONCLUSIONS AND RELEVANCE: Neurofilament light, which reflects white matter damage and axonal injury, yielded the highest accuracy in predicting neurologic outcome in patients with HIBI at 48 hours after ROSC. TRIAL REGISTRATION: PROSPERO Identifier: CRD42020157366.


Assuntos
Lesões Encefálicas , Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Parada Cardíaca Extra-Hospitalar , Biomarcadores , Encéfalo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...