Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 338: 122186, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763722

RESUMO

Novel value-added starch-based materials can be produced by forming amylose inclusion complexes (AIC) with hydrophobic compounds. There is currently little research on AIC use as polymeric emulsifiers, particularly for AIC with fatty amine salt ligands. This work evaluated AIC emulsifiers by studying the structure and functionality of AIC composed of high amylose corn starch and fatty amine salts (10-18 carbons, including a mixture simulating vegetable oil composition) produced via steam jet cooking. X-ray scattering verified successful AIC formation, with peaks located near 7.0°, 12.8° and 19.9° 2θ. AIC were easily dispersed in water (80-85 °C) and remained in suspension at room temperature for weeks, unlike the uncomplexed ligands or starch. AIC were highly effective emulsifying agents, with emulsifying activity indexes of 213-229 m2g-1 at pH 5, and zeta potentials, a measure of electrostatic repulsion, as high as 43.4 mV. AIC dispersions had surface tension ranging from 24 to 41 mN/m and displayed surface-active properties superior to amylose complexes formed from fatty acid salts and competitive with common starch-based emulsifiers. These findings demonstrate that fatty amine salt AIC are effective emulsifiers that can be made from low-cost sources of fatty amine salts, such as vegetable oil derivatives.

2.
Sci Rep ; 12(1): 15, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996967

RESUMO

The nutritional integrity of wheat is jeopardized by rapidly rising atmospheric carbon dioxide (CO2) and the associated emergence and enhanced virulence of plant pathogens. To evaluate how disease resistance traits may impact wheat climate resilience, 15 wheat cultivars with varying levels of resistance to Fusarium Head Blight (FHB) were grown at ambient and elevated CO2. Although all wheat cultivars had increased yield when grown at elevated CO2, the nutritional contents of FHB moderately resistant (MR) cultivars were impacted more than susceptible cultivars. At elevated CO2, the MR cultivars had more significant differences in plant growth, grain protein, starch, fructan, and macro and micro-nutrient content compared with susceptible wheat. Furthermore, changes in protein, starch, phosphorus, and magnesium content were correlated with the cultivar FHB resistance rating, with more FHB resistant cultivars having greater changes in nutrient content. This is the first report of a correlation between the degree of plant pathogen resistance and grain nutritional content loss in response to elevated CO2. Our results demonstrate the importance of identifying wheat cultivars that can maintain nutritional integrity and FHB resistance in future atmospheric CO2 conditions.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Triticum/química , Triticum/imunologia , Resistência à Doença , Magnésio/análise , Magnésio/metabolismo , Valor Nutritivo , Fósforo/análise , Fósforo/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/classificação , Sementes/imunologia , Sementes/metabolismo , Triticum/classificação , Triticum/metabolismo
3.
J Sci Food Agric ; 101(14): 5792-5806, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33792043

RESUMO

BACKGROUND: Significant amounts of nutrients, including dietary fibers, proteins, minerals, and vitamins are present in legumes, but the presence of anti-nutritional factors (ANFs) like phytic acid, tannins, and enzyme inhibitors impact the consumption of legumes and nutrient availability. In this research, the effect of a physical process (sonication or precooking) and fermentation with Lactobacillus plantarum and Pediococcus acidilactici on the ANFs of some legumes was evaluated. RESULTS: Total phenolic content was significantly (P < 0.05) reduced for modified and fermented substrates compared with non-fermented controls. Trypsin inhibitory activity (TIA) was reduced significantly for all substrates except for unsonicated soybean and lentils fermented with L. plantarum and P. acidilactici. When physical processing was done, there was a decrease in TIA for all the substrate. Phytic acid content decreased for physically modified soybean and lentil but not significantly for green pea. Even though there was a decrease in ANFs, there was no significant change in in vitro protein digestibility for all substrates except for unsonicated L. plantarum fermented soybean flour and precooked L. plantarum fermented lentil. Similarly, there was a change in amino acid content when physically modified and fermented. CONCLUSION: Both modified and unmodified soybean flour, green pea flour, and lentil flour supported the growth of L. plantarum and P. acidilactici. The fermentation of this physically processed legume and pulse flours influenced the non-nutritive compounds, thereby potentially improving nutritional quality and usage. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Farinha/microbiologia , Lactobacillus plantarum/metabolismo , Lens (Planta)/microbiologia , Pisum sativum/microbiologia , Fermentação , Farinha/análise , Manipulação de Alimentos , Lactobacillus plantarum/crescimento & desenvolvimento , Lens (Planta)/química , Lens (Planta)/metabolismo , Avaliação Nutricional , Pisum sativum/química , Pisum sativum/metabolismo , Ácido Fítico/análise , Ácido Fítico/metabolismo , Sementes/química , Sementes/metabolismo , Sementes/microbiologia
4.
J Agric Food Chem ; 68(23): 6297-6307, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32407107

RESUMO

Rising atmospheric [CO2] has been shown to impact plant primary metabolism and the severity of Fusarium head blight (FHB) in wheat. In this study, we evaluated how changes in grain nutritional content due to growth at elevated [CO2] affected Fusarium graminearum growth and mycotoxin production. Susceptible (Norm) and moderately resistant (Alsen) hard spring wheat grains that had been grown at ambient (400 ppm) or elevated [CO2] (800 ppm) were independently inoculated with two F. graminearum fungal strains, which produce the trichothecene mycotoxin, deoxynivalenol. Under higher [CO2], FHB-susceptible and moderately resistant wheat had disproportionate losses in protein and mineral contents, with Alsen being more severely impacted. Furthermore, the F. graminearum strain 9F1 had increased mycotoxin biosynthesis in response to the loss of wheat nutritional content in Alsen. Our results demonstrate that future [CO2] conditions may provide a strain-specific pathogenic advantage on hosts, with greater losses in nutritional content.


Assuntos
Dióxido de Carbono/análise , Fusarium/metabolismo , Micotoxinas/análise , Triticum/química , Triticum/microbiologia , Dióxido de Carbono/metabolismo , Fusarium/crescimento & desenvolvimento , Micotoxinas/metabolismo , Valor Nutritivo , Doenças das Plantas/microbiologia , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
5.
Int J Biol Macromol ; 145: 712-721, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31862371

RESUMO

Impact of high-power sonication (HPS) as pretreatment in extraction and some physicochemical properties of proteins from soybean flakes, flour of soybean, chickpea, and kidney bean was evaluated. Soybean flakes and flours from soybean, chickpea, and kidney bean were dispersed in distilled water (1.10 w/v) and sonicated at two power densities (PD) of 2.5 and 4.5 W/cm3 for 5 min continuously. Proteins were extracted at pH range 8-8.5. PD 2.5 and 4.5 W/cm3 significantly increased protein extraction yields from soy flakes to 29.03% and 25.87%, respectively, compared to 15.28% for unsonicated controls, but did not increase for flours. Freeze-dried spent substrates at higher PD sonication aggregated in size. Free sulfhydryl content for both sonicated and unsonicated soy flakes and flour were similar but increased in chickpea and kidney bean when HPS of 4.5 W/cm3 was applied, indicating the unfolding of protein structure. The protein band patterns for sonicated and unsonicated legumes proteins were found to be similar, indicating no peptide profile alterations by HPS. However, circular dichroism analysis showed changes in secondary structure composition in extracted kidney bean protein causing unfolding and destabilizing the native structure. The secondary structure composition for soy flakes and flour protein and chickpea protein remained unchanged.


Assuntos
Farinha/efeitos da radiação , Manipulação de Alimentos , Proteínas de Plantas/química , Sonicação , Cicer/química , Humanos , Phaseolus/química , Proteínas de Plantas/efeitos da radiação , Glycine max/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...