Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139088

RESUMO

The study of the semiochemicals produced by the flowers of Impatiens spp. is an important topic that may explain the reason for the rapid expansion of some species in this genus. Impatiens L. belongs to the Balsaminaceae family, which includes several species considered to be invasive plants in Europe. This study aimed to characterize the phytochemistry of four naturally occurring plant species in Poland, including three invasive alien taxa (Impatiens parviflora, I. glandulifera, and I. capensis) and one native species (I. noli-tangere). Gas chromatographic techniques were used to assess phytochemical profiles of chemical attractant cues in their pollination biology. We detected differences in the scent profiles of the investigated species. All the examined Impatiens species produce various alcohols, i.e., heptacosanol, octacosanol, aldehydes (e.g., octadecanal, eicosanal, etc.), and fatty acids, as well as long-chain hydrocarbons such as dodecane, tricosane, petacosane, hexacosane, and farnesene. Impatiens parviflora, I. glandulifera, and I. capensis produce geraniol and linalool, which attract members of the Apidae family, including bumblebees and honeybees. Impatiens parviflora also produces linalool-derived monoterpenes (linalool oxide and 8-hydroxylinalool), which are a strong attractant for Diptera; this may clarify why the species is mainly visited and pollinated by syrphid flies. A list of insect visitors to the Impatiens species under study can be found in the article.


Assuntos
Balsaminaceae , Abelhas , Animais , Flores , Feromônios
2.
BMC Plant Biol ; 22(1): 196, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418038

RESUMO

BACKGROUND: The flowers of some species of orchids produce nectar as a reward for pollination, the process of transferring pollen from flower to flower. Epipactis albensis is an obligatory autogamous species, does not require the presence of insects for pollination, nevertheless, it has not lost the ability to produce nectar, the chemical composition of which we examined by gas chromatography-mass spectrometry (GC-MS) method for identification of potential insect attractants. RESULTS: During five years of field research, we did not observe any true pollinating insects visiting the flowers of this species, only accidental insects as ants and aphids. As a result of our studies, we find that this self-pollinating orchid produces in nectar inter alia aliphatic saturated and unsaturated aldehydes such as nonanal (pelargonal) and 2-pentenal as well as aromatic ones (i.e., syringaldehyde, hyacinthin). The nectar is low in alkenes, which may explain the absence of pollinating insects. Moreover, vanillin and eugenol derivatives, well-known as important scent compounds were also identified, but the list of chemical compounds is much poorer compared with a closely related species, insect-pollinating E. helleborine. CONCLUSION: Autogamy is a reproductive mechanism employed by many flowering plants, including the orchid genus Epipactis, as an adaptation to growing in habitats where pollinating insects are rarely observed due to the lack of nectar-producing plants they feed on. The production of numerous chemical attractants by self-pollinated E. albensis confirms the evolutionary secondary process, i.e., transition from ancestral insect-pollinating species to obligatory autogamous.


Assuntos
Orchidaceae , Animais , Flores/química , Insetos , Orchidaceae/química , Feromônios/análise , Néctar de Plantas/análise , Polinização
3.
Inorg Chem ; 47(6): 2103-12, 2008 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-18269243

RESUMO

A new mixed adduct, (4-MPyO)2(CuCl2)2(H2O)(C2H5OH) [where 4-MPyO is the 4-(4-methoxystyryl)pyridine N-oxide], was obtained for the first time. It has been characterized by X-ray studies, IR, electronic absorption, and emission spectra, lifetime measurements, and variable-temperature magnetic susceptibility measurements in the range 80-300 K. The single-crystal X-ray diffraction shows that the geometry around both of the copper(II) ions can be described as a tetragonal pyramid with a trapezoidal base at the corners of which are two oxygen atoms of N-oxide and two chlorine atoms. The oxygen atoms of either water or ethanol are at the apex of the pyramid. Besides that, two molecules of the adduct form a double-hydrogen-bonded superdimer in which they are connected to each other through hydrogen bonds of the O-H...Cl type as formed between the chlorine atoms and ethanol molecule (Cl...O 3.22 A). The copper(II) atoms are antiferromagnetically coupled within a dimeric unit, and a singlet-triplet separation of 2 J value (1100 cm(-1)) is greater than the value expected from Hatfield's rule for the bridging angles Cu-O-Cu equal 108.9 degrees and 110.2 degrees . By means of the PM3-calculated values of vertical excitation energies, the ligand-to-metal charge-transfer (LMCT) and the metal-to-ligand charge-transfer transitions in the unresolved experimental absorption spectra of I have been revealed. From the large Stokes shift value of emission spectra in solvents of different polarity (more than 6500 cm(-1) in acetonitrile), the charge-transfer (CT) nature of the emissive (LMCT) state of I has been concluded. Biexponential decay of the excited complex in acetonitrile and frozen propanol suggests that the two different CT conformers (0.8, 4.12 ns and 1.99, 15.2 ns, respectively) are present in the excited state in solution while only one CT form is indicated by a monoexponential decay (9.0 micros) in the solid.


Assuntos
Cobre/química , Piridinas/química , Cristalografia por Raios X/métodos , Magnetismo , Modelos Químicos , Modelos Moleculares , Óxidos/química , Fotoquímica/métodos
4.
J Phys Chem A ; 110(37): 10690-8, 2006 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-16970358

RESUMO

The crystal structure of 2-butylamino-6-methyl-4-nitropyridine N-oxide (2B6M) was resolved on the basis of X-ray diffraction. Solid 2B6M occurs in the form of a doubly hydrogen-bonded dimer with squarelike hydrogen-bonding network composed of two intra- (2.556(2) A) and two intermolecular (2.891(2) A) N-H...O type hydrogen bonds. The molecule thus has both a protonable and a deprotonable group that led us to investigate the possibility of an excited-state proton transfer (ESIPT) reaction in different solvents by means of experimental absorption, steady state, and time-resolved emission spectroscopy. The results were correlated with quantum mechanical TD-DFT and PM3 calculations. Experimental and theoretical findings show the possibility of an ESIPT reaction in polar solvents. It is demonstrated that in particular the emission spectra of 2B6M are very sensitive to solvent properties, and a large value of the Stokes shift (about 8000 cm(-1)) in acetonitrile is indicative for an ESIPT process. This conclusion is further supported by time-resolved fluorescence decay measurents that show dual exponential decay in polar solvents. Vertical excitation energies calculated by TD-DFT reproduce the experimental absorption maxima in nonpolar solvents well. The majority of electronic transitions in 2B6M is of pi --> pi* character with a charge shift from the electron-donating to the electron-accepting groups. The calculations show that, due to the charge redistribution on excitation, the acidity of the amino group increases significantly, which facilitates the proton transfer from the amino to the N-oxide group in the excited state.


Assuntos
Prótons , Piridinas/química , Cristalografia por Raios X , Dimerização , Ligação de Hidrogênio , Estrutura Molecular , Teoria Quântica , Espectrometria de Fluorescência , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...