Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(41): 23563-23573, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33073816

RESUMO

Noble metal nanoparticles dispersed in semiconductors, mainly in ZnO, have been intensively investigated. Au dispersion and possible precipitation as well as damage growth were studied in ZnO of various orientations, a-plane (112[combining macron]0) and c-plane (0001), using 1 MeV Au+-ion implantation with an ion fluence of 1.5 × 1016 cm-2 and subsequently annealed at 600 °C in an ambient atmosphere for one hour. Afterwards, irradiation with 10 MeV O3+ at a fluence of 5 × 1014 cm-2 was used to modify Au distribution and internal morphology as well as to follow the structural modification of ZnO under high-energy light-ion irradiation. Rutherford backscattering spectrometry in the channelling mode (RBS-C) and Raman spectroscopy show that O irradiation with high electronic energy transfer distinctly modifies the implanted Au layer in various ZnO facets; it introduces additional displacement and disorder in the O sublattice mainly in the a-plane while not creating an additional strain in this facet. This has been confirmed by XRD analysis, identifying the appearance of an additional phase (nanocrystallites) after Au implantation, which diminishes after O irradiation, and RBS-C has identified decreased disorder in the Zn-sublattice. Unlike in c-plane ZnO, it has been possible to observe a local compressive deformation around spherical defects, which is more pronounced after O irradiation simultaneously with the vertical strain introduced in the Au-implanted and annealed layer. Transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS) was employed to investigate the interior morphology, showing the occurrence of Au-hcp clusters of the small sizes of about 4-10 nm; neither the cluster sizes nor their shapes are significantly affected by the O irradiation.

2.
Phys Rev Lett ; 123(3): 036406, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31386447

RESUMO

Magnetotransport constitutes a useful probe to understand the interplay between electronic band topology and magnetism in spintronic devices. A recent theory of Lu and Shen [Phys. Rev. Lett. 112, 146601 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.146601] on magnetically doped topological insulators predicts that quantum corrections Δκ to the temperature dependence of conductivity can change sign across the Curie transition. This phenomenon has been attributed to a suppression of the Berry phase of the topological surface states at the Fermi level, caused by a magnetic energy gap. Here, we demonstrate experimentally that Δκ can reverse its sign even when the Berry phase at the Fermi level remains unchanged. The contradictory behavior to theory predictions is resolved by extending the model by Lu and Shen to a nonmonotonic temperature scaling of the inelastic scattering length showing a turning point at the Curie transition.

3.
Nat Commun ; 7: 11623, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279433

RESUMO

Commercial magnetic memories rely on the bistability of ordered spins in ferromagnetic materials. Recently, experimental bistable memories have been realized using fully compensated antiferromagnetic metals. Here we demonstrate a multiple-stable memory device in epitaxial MnTe, an antiferromagnetic counterpart of common II-VI semiconductors. Favourable micromagnetic characteristics of MnTe allow us to demonstrate a smoothly varying zero-field antiferromagnetic anisotropic magnetoresistance (AMR) with a harmonic angular dependence on the writing magnetic field angle, analogous to ferromagnets. The continuously varying AMR provides means for the electrical read-out of multiple-stable antiferromagnetic memory states, which we set by heat-assisted magneto-recording and by changing the writing field direction. The multiple stability in our memory is ascribed to different distributions of domains with the Néel vector aligned along one of the three magnetic easy axes. The robustness against strong magnetic field perturbations combined with the multiple stability of the magnetic memory states are unique properties of antiferromagnets.

4.
Nat Commun ; 7: 10559, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26892831

RESUMO

Magnetic doping is expected to open a band gap at the Dirac point of topological insulators by breaking time-reversal symmetry and to enable novel topological phases. Epitaxial (Bi(1-x)Mn(x))2Se3 is a prototypical magnetic topological insulator with a pronounced surface band gap of ∼100 meV. We show that this gap is neither due to ferromagnetic order in the bulk or at the surface nor to the local magnetic moment of the Mn, making the system unsuitable for realizing the novel phases. We further show that Mn doping does not affect the inverted bulk band gap and the system remains topologically nontrivial. We suggest that strong resonant scattering processes cause the gap at the Dirac point and support this by the observation of in-gap states using resonant photoemission. Our findings establish a mechanism for gap opening in topological surface states which challenges the currently known conditions for topological protection.

5.
Nanotechnology ; 26(6): 065602, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25605224

RESUMO

We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.

6.
Acta Mater ; 100: 126-134, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29176930

RESUMO

Nucleation and growth kinetics of nanoparticles of hexagonal ω phase in a body-centered cubic ß titanium matrix in single crystals of ß-Ti alloys were investigated by small-angle x-ray scattering measured in-situ during ageing at various temperatures up to 450 °C. The experimental data were compared with numerical simulations based on a three-dimensional short-range order model of nanoparticle self-ordering. The x-ray contrast of the particles is caused by an inhomogeneous distribution of impurity atoms (Mo, Fe and Al), whose density profile around growing nanoparticles was simulated by solving the corresponding diffusion equation with moving boundary conditions. From the analysis of the experimental data we determined the mean distance and size of the nanoparticles and confirmed the validity of the ∝ t1/3 growth law following from the Lifshitz-Slyozov-Wagner theory. From a detailed comparison of the experimental data with simulations we also assessed the diffusion coefficient of the impurity atoms and its activation energy.

7.
Rev Sci Instrum ; 84(10): 103902, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24182124

RESUMO

We report on a systematic study of the stress transferred from an electromechanical piezo-stack into GaAs wafers under a wide variety of experimental conditions. We show that the strains in the semiconductor lattice, which were monitored in situ by means of X-ray diffraction, are strongly dependent on both the wafer thickness and on the selection of the glue which is used to bond the wafer to the piezoelectric actuator. We have identified an optimal set of parameters that reproducibly transfers the largest distortions at room temperature. We have studied strains produced not only by the frequently used uniaxial piezostressors but also by the biaxial ones which replicate the routinely performed experiments using substrate-induced strains but with the advantage of a continuously tunable lattice distortion. The time evolution of the strain response and the sample tilting and/or bending are also analyzed and discussed.

8.
Nat Commun ; 4: 2322, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23959149

RESUMO

Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the epitaxial growth of a new high-temperature antiferromagnetic material, tetragonal CuMnAs, which exhibits excellent crystal quality, chemical order and compatibility with existing semiconductor technologies. We demonstrate its growth on the III-V semiconductors GaAs and GaP, and show that the structure is also lattice matched to Si. Neutron diffraction shows collinear antiferromagnetic order with a high Néel temperature. Combined with our demonstration of room-temperature-exchange coupling in a CuMnAs/Fe bilayer, we conclude that tetragonal CuMnAs films are suitable candidate materials for antiferromagnetic spintronics.

9.
Nanotechnology ; 24(33): 335707, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23892543

RESUMO

Strain engineering and the crystalline quality of semiconductor nanostructures are important issues for electronic and optoelectronic devices. We report on defect-free SiGe island arrays resulting from Ge coverages of up to 38 monolayers grown on prepatterned Si(001) substrates. This represents a significant expansion of the parameter space known for the growth of perfect island arrays. A cyclic development of the Ge content and island shape was observed while increasing the Ge coverage. Synchrotron-based x-ray diffraction experiments and finite element method calculations allow us to study the strain behavior of such islands in great detail. In contrast to the oscillatory changes of island shape and average Ge content, the overall strain behavior of these islands exhibits a clear monotonic trend of progressive strain relaxation with increasing Ge coverage.

10.
Sci Rep ; 3: 2220, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23860685

RESUMO

Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe81Ga19) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications.

11.
Nanotechnology ; 23(46): 465705, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23092941

RESUMO

We present investigations on the strain properties of silicon capping layers on top of regular SiGe island arrays, in dependence on the Si-layer thickness. Such island arrays are used as stressors for the active channel in field-effect transistors where the desired tensile strain in the Si channel is a crucial parameter for the performance of the device. The thickness of the Si cap was varied from 0 to 30 nm. The results of high resolution x-ray diffraction experiments served as input to perform detailed strain calculations via finite element method models. Thus, detailed information on the Ge distribution within the buried islands and the strain interaction between the SiGe island and Si cap was obtained. It was found that the tensile strain within the Si capping layer strongly depends on its thickness, even if the Ge concentration of the buried dot remains unchanged, with tensile strains degrading if thicker Si layers are used.

12.
Nat Mater ; 10(5): 347-51, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21399629

RESUMO

A spin valve is a microelectronic device in which high- and low-resistance states are realized by using both the charge and spin of carriers. Spin-valve structures used in modern hard-drive read heads and magnetic random access memoriescomprise two ferromagnetic electrodes whose relative magnetization orientations can be switched between parallel and antiparallel configurations, yielding the desired giant or tunnelling magnetoresistance effect. Here we demonstrate more than 100% spin-valve-like signal in a NiFe/IrMn/MgO/Pt stack with an antiferromagnet on one side and a non-magnetic metal on the other side of the tunnel barrier. Ferromagneticmoments in NiFe are reversed by external fields of approximately 50 mT or less, and the exchange-spring effect of NiFe on IrMn induces rotation of antiferromagnetic moments in IrMn, which is detected by the measured tunnelling anisotropic magnetoresistance. Our work demonstrates a spintronic element whose transport characteristics are governed by an antiferromagnet. It demonstrates that sensitivity to low magnetic fields can be combined with large, spin-orbit-coupling-induced magnetotransport anisotropy using a single magnetic electrode. The antiferromagnetic tunnelling anisotropic magnetoresistance provides a means to study magnetic characteristics of antiferromagnetic films by an electronic-transport measurement.

13.
Epidemiol Mikrobiol Imunol ; 60(4): 167-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22324246

RESUMO

Cronobacter spp. belongs to the family Enterobacteriaceae. It is a motile (peritricha) Gram-negative non-spore forming bacterium. At present, Enterobacter sakazakii is reported as a Cronobacter spp. species with 16 biogroups. It is a ubiquitous organism whose isolation used to be associated with a contaminated powdered infant formula and feed for neonates and infants. Information about the Cronobacter spp. species incidence in the environment, its potential dissemination and its vectors, is very limited. The authors have documented incidence of Cronobacter spp. in the nostril mucous membrane of a healthy stabled horse. The above points out at the absolutely insufficient and unsystematic information about the dissemination of the Cronobacter spp. strain in the environment of animals and the people who are in contact with them.


Assuntos
Cronobacter sakazakii/isolamento & purificação , Cavalos/microbiologia , Cavidade Nasal/microbiologia , Animais
14.
J Phys Condens Matter ; 22(29): 296009, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21399326

RESUMO

We present a method for the determination of the concentration of Mn ions in nonequivalent interstitial positions in the lattice of (Ga, Mn)As. The Mn ions occupy substitutional and/or interstitial positions in the GaAs lattice and the dependence of the structure factor on their concentration differs for various diffractions and for different positions in the lattice. We measured several diffractions including weak diffractions, which are very sensitive to the Mn content. All measured diffraction curves were simultaneously fitted to a theoretical model and the densities of Mn ions, in particular interstitial positions, were obtained. The method reported here allows us to determine the amount of interstitial Mn which, according to current understanding, affects the ferromagnetic properties including the Curie temperature in (Ga, Mn)As.

15.
Nanotechnology ; 20(8): 085612, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19417460

RESUMO

We studied the structural properties of (Ge+SiO2)/SiO2 multilayer films, especially the influence of the deposition temperature and the parameters of subsequent annealing on the formation and spatial correlation of Ge quantum dots in an amorphous silica matrix. We showed that in-layer and inter-layer spatial correlations of the formed Ge quantum dots strongly depend on the deposition temperature. For suitable chosen deposition parameters, highly correlated dot positions in all three dimensions can be obtained. It is demonstrated that the degree of the spatial correlation of quantum dots influences the size distribution width, which further affects the macroscopic properties of the quantum dot arrays.


Assuntos
Cristalização/métodos , Germânio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Pontos Quânticos , Dióxido de Silício/química , Gases/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Temperatura
16.
Phys Rev Lett ; 101(13): 135502, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18851460

RESUMO

The control on the distribution of magnetic ions into a semiconducting host is crucial for the functionality of magnetically doped semiconductors. Through a structural analysis at the nanoscale, we give experimental evidence that the aggregation of Fe ions in (Ga,Fe)N and consequently the magnetic response of the material are affected by the growth rate and doping with shallow impurities.

17.
Phys Rev Lett ; 99(22): 225504, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18233297

RESUMO

A new x-ray scattering method is presented making possible the detection of defects and the investigation of the structure of their cores. The method uses diffuse x-ray scattering measured close to a forbidden diffraction peak, in which the intensity scattered from the distorted crystal lattice around the defects is minimized. As a first example of this nondestructive method we demonstrate how the local compression of the extra {111} double planes in extrinsic stacking faults in Si can be probed and quantified using a continuum approach for the simulation of the displacements. The results of the theory developed are found to be in very good agreement with atomistic simulations and experiments.

18.
Phys Rev Lett ; 96(13): 136102, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16712005

RESUMO

Continuum simulations of self-organized lateral compositional modulation growth in InAs/AlAs short-period superlattices on InP substrate are presented. The results of the simulations correspond quantitatively to the results of synchrotron x-ray diffraction experiments. The time evolution of the compositional modulation during epitaxial growth can be explained only including a nonlinear dependence of the elastic energy of the growing epitaxial layer on its thickness. From the fit of the experimental data to the growth simulations we have determined the parameters of this nonlinear dependence. It was found that the modulation amplitude does not depend on the values of the surface diffusion constants of particular elements.

19.
Phys Rev Lett ; 97(26): 266103, 2006 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-17280432

RESUMO

Epitaxial overgrowth of PbSe quantum dots is shown to drastically affect their shape and composition due to anion exchange reactions. As shown by scanning tunneling microscopy, for PbTe capping layers this results in a complete truncation of the dots. Introduction of EuTe into the cap layer leads to an effective suppression of the anion exchange process. This preserves the original dot pyramids and induces a large stress concentration on the surface which further alters the overgrowth process.

20.
Phys Rev Lett ; 84(20): 4669-72, 2000 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10990767

RESUMO

The tuning of lateral and vertical correlations in self-organized PbSe/Pb 1-xEu xTe quantum dot superlattices by changes in the spacer thicknesses is demonstrated and shown to be due to finite size effects in the dot-dot interactions. As a consequence, different dot arrangements such as vertically aligned dot columns or fcc stacking are obtained for a single material system without changes in growth conditions. The different dot superstructures are shown to exhibit a different scaling behavior of the lateral versus vertical dot separation, as well as a different evolution of dot sizes and shapes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...