Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Nat Cell Biol ; 25(12): 1833-1847, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945904

RESUMO

MAF amplification increases the risk of breast cancer (BCa) metastasis through mechanisms that are still poorly understood yet have important clinical implications. Oestrogen-receptor-positive (ER+) BCa requires oestrogen for both growth and metastasis, albeit by ill-known mechanisms. Here we integrate proteomics, transcriptomics, epigenomics, chromatin accessibility and functional assays from human and syngeneic mouse BCa models to show that MAF directly interacts with oestrogen receptor alpha (ERα), thereby promoting a unique chromatin landscape that favours metastatic spread. We identify metastasis-promoting genes that are de novo licensed following oestrogen exposure in a MAF-dependent manner. The histone demethylase KDM1A is key to the epigenomic remodelling that facilitates the expression of the pro-metastatic MAF/oestrogen-driven gene expression program, and loss of KDM1A activity prevents this metastasis. We have thus determined that the molecular basis underlying MAF/oestrogen-mediated metastasis requires genetic, epigenetic and hormone signals from the systemic environment, which influence the ability of BCa cells to metastasize.


Assuntos
Neoplasias da Mama , Epigênese Genética , Receptor alfa de Estrogênio , Amplificação de Genes , Proteínas Proto-Oncogênicas c-maf , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromatina , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Proteínas Proto-Oncogênicas c-maf/genética
2.
Cancers (Basel) ; 15(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37190140

RESUMO

CDK 4/6 inhibitors have demonstrated significant improved survival for patients with estrogen receptor (ER) positive breast cancer (BC). However, the ability of these promising agents to inhibit bone metastasis from either ER+ve or triple negative BC (TNBC) remains to be established. We therefore investigated the effects of the CDK 4/6 inhibitor, palbociclib, using in vivo models of breast cancer bone metastasis. In an ER+ve T47D model of spontaneous breast cancer metastasis from the mammary fat pad to bone, primary tumour growth and the number of hind limb skeletal tumours were significantly lower in palbociclib treated animals compared to vehicle controls. In the TNBC MDA-MB-231 model of metastatic outgrowth in bone (intracardiac route), continuous palbociclib treatment significantly inhibited tumour growth in bone compared to vehicle. When a 7-day break was introduced after 28 days (mimicking the clinical schedule), tumour growth resumed and was not inhibited by a second cycle of palbociclib, either alone or when combined with the bone-targeted agent, zoledronic acid (Zol), or a CDK7 inhibitor. Downstream phosphoprotein analysis of the MAPK pathway identified a number of phosphoproteins, such as p38, that may contribute to drug-insensitive tumour growth. These data encourage further investigation of targeting alternative pathways in CDK 4/6-insensitive tumour growth.

3.
Proc Nutr Soc ; 82(1): 58-62, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36503526

RESUMO

The 2nd Nutrition and Cancer Networking Meeting 'Nutrition and Breast Cancer: Translating Evidence into Practice' was held at Newcastle University in May 2022, with support from the Nutrition Society and British Association for Cancer Research. The first meeting in this series was held in Sheffield in 2019. The aim of this joint meeting was to bring together researchers with an interest in nutrition and breast cancer, with the programme spanning topics from risk and prevention to nutrition during treatment and beyond. Several key themes emerged, including the importance of engaging patients in the development of interventions and trials, making trials more accessible to diverse communities; training of clinical staff in nutrition and latest evidence; wider range of compounds should be considered in food composition tables; and alternative trial designs can be considered for prevention research to reduce financial burden and increase power.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/prevenção & controle , Alimentos
4.
Nanoscale ; 13(43): 18237-18246, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34710206

RESUMO

Mechanically dependent processes are essential in cancer metastases. However, reliable mechanical characterization of metastatic cancer remains challenging whilst maintaining the tissue complexity and an intact sample. Using atomic force microscopy, we quantified the micro-mechanical properties of relatively intact metastatic breast tumours and their surrounding bone microenvironment isolated from mice, and compared with other breast cancer models both ex vivo and in vitro. A mechanical distribution of extremely low elastic modulus and viscosity was identified on metastatic tumours, which were significantly more compliant than both 2D in vitro cultured cancer cells and subcutaneous tumour explants. The presence of mechanically distinct metastatic tumour did not result in alterations of the mechanical properties of the surrounding microenvironment at meso-scale distances (>200 µm). These findings demonstrate the utility of atomic force microscopy in studies of complex tissues and provide new insights into the mechanical properties of cancer metastases in bone.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Animais , Módulo de Elasticidade , Feminino , Humanos , Camundongos , Microscopia de Força Atômica , Microambiente Tumoral , Viscosidade
5.
Cancers (Basel) ; 13(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34439077

RESUMO

Metastatic recurrence, the major cause of breast cancer mortality, is driven by reactivation of dormant disseminated tumour cells that are defined by mitotic quiescence and chemoresistance. The molecular mechanisms underpinning mitotic quiescence in cancer are poorly understood, severely limiting the development of novel therapies for removal of residual, metastasis-initiating tumour cells. Here, we present a molecular portrait of the quiescent breast cancer cell transcriptome across the four main breast cancer sub-types (luminal, HER2-enriched, basal-like and claudin-low) and identify a novel quiescence-associated 22-gene signature using an established lipophilic-dye (Vybrant® DiD) retention model and whole-transcriptomic profiling (mRNA-Seq). Using functional association network analysis, we elucidate the molecular interactors of these signature genes. We then go on to demonstrate that our novel 22-gene signature strongly correlates with low tumoural proliferative activity, and with dormant disease and late metastatic recurrence (≥5 years after primary tumour diagnosis) in metastatic breast cancer in multiple clinical cohorts. These genes may govern the formation and persistence of disseminated tumour cell populations responsible for breast cancer recurrence, and therefore represent prospective novel candidates to inform future development of therapeutic strategies to target disseminated tumour cells in breast cancer, eliminate minimal residual disease and prevent metastatic recurrence.

6.
Cancers (Basel) ; 13(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803526

RESUMO

Metastatic breast cancer in bone is incurable and there is an urgent need to develop new therapeutic approaches to improve survival. Key to this is understanding the mechanisms governing cancer cell survival and growth in bone, which involves interplay between malignant and accessory cell types. Here, we performed a cellular and molecular comparison of the bone microenvironment in mouse models representing either metastatic indolence or growth, to identify mechanisms regulating cancer cell survival and fate. In vivo, we show that regardless of their fate, breast cancer cells in bone occupy niches rich in osteoblastic cells. As the number of osteoblasts in bone declines, so does the ability to sustain large numbers of breast cancer cells and support metastatic outgrowth. In vitro, osteoblasts protected breast cancer cells from death induced by cell stress and signaling via gap junctions was found to provide important juxtacrine protective mechanisms between osteoblasts and both MDA-MB-231 (TNBC) and MCF7 (ER+) breast cancer cells. Combined with mathematical modelling, these findings indicate that the fate of DTCs is not controlled through the association with specific vessel subtypes. Instead, numbers of osteoblasts dictate availability of protective niches which breast cancer cells can colonize prior to stimulation of metastatic outgrowth.

7.
Physiol Rev ; 101(3): 797-855, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356915

RESUMO

Skeletal metastases are frequent complications of many cancers, causing bone complications (fractures, bone pain, disability) that negatively affect the patient's quality of life. Here, we first discuss the burden of skeletal complications in cancer bone metastasis. We then describe the pathophysiology of bone metastasis. Bone metastasis is a multistage process: long before the development of clinically detectable metastases, circulating tumor cells settle and enter a dormant state in normal vascular and endosteal niches present in the bone marrow, which provide immediate attachment and shelter, and only become active years later as they proliferate and alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells, promoting skeletal destruction. The molecular mechanisms involved in mediating each of these steps are described, and we also explain how tumor cells interact with a myriad of interconnected cell populations in the bone marrow, including a rich vascular network, immune cells, adipocytes, and nerves. We discuss metabolic programs that tumor cells could engage with to specifically grow in bone. We also describe the progress and future directions of existing bone-targeted agents and report emerging therapies that have arisen from recent advances in our understanding of the pathophysiology of bone metastases. Finally, we discuss the value of bone turnover biomarkers in detection and monitoring of progression and therapeutic effects in patients with bone metastasis.


Assuntos
Neoplasias Ósseas/secundário , Osso e Ossos/patologia , Animais , Biomarcadores/metabolismo , Conservadores da Densidade Óssea/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Osso e Ossos/metabolismo , Denosumab/uso terapêutico , Humanos
8.
MedComm (2020) ; 2(4): 514-530, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34977868

RESUMO

Triple negative breast cancer (TNBC) cells lack expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). Thus, TNBC does not respond to hormone-based therapy. TNBC is also an aggressive subtype associated with poorer prognoses compared to other breast cancers. Conventional chemotherapeutics are used to manage TNBC although systemic relapse is common with limited benefits being reported as well as adverse events being documented. Here, we discuss current therapies for TNBC in the neo- and adjuvant settings, as well as recent advancements in the targeting of PD-L1-positive tumors and inclusion of PARP inhibitors for TNBC patients with BRCA mutations. The recent development of cyclin-dependent kinase (CDK) 4/6 inhibitors in ER-positive breast cancers has demonstrated significant improvements in progression free survival in patients. Here, we review preclinical data of CDK 4/6 inhibitors and describe current clinical trials assessing these in TNBC disease.

9.
Biophys J ; 119(3): 502-513, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32668233

RESUMO

Bones are structurally heterogeneous organs with diverse functions that undergo mechanical stimuli across multiple length scales. Mechanical characterization of the bone microenvironment is important for understanding how bones function in health and disease. Here, we describe the mechanical architecture of cortical bone, the growth plate, metaphysis, and marrow in fresh murine bones, probed using atomic force microscopy in physiological buffer. Both elastic and viscoelastic properties are found to be highly heterogeneous with moduli ranging over three to five orders of magnitude, both within and across regions. All regions include extremely compliant areas, with moduli of a few pascal and viscosities as low as tens of Pa·s. Aging impacts the viscoelasticity of the bone marrow strongly but has a limited effect on the other regions studied. Our approach provides the opportunity to explore the mechanical properties of complex tissues at the length scale relevant to cellular processes and how these impact aging and disease.


Assuntos
Microscopia de Força Atômica , Animais , Camundongos , Viscosidade
10.
Oncogene ; 39(12): 2624-2637, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32005976

RESUMO

Epithelial to mesenchymal transition (EMT) is a dynamic process that drives cancer cell plasticity and is thought to play a major role in metastasis. Here we show, using MDA-MB-231 cells as a model, that the plasticity of at least some metastatic breast cancer cells is dependent on the transcriptional co-regulator CBFß. We demonstrate that CBFß is essential to maintain the mesenchymal phenotype of triple-negative breast cancer cells and that CBFß-depleted cells undergo a mesenchymal to epithelial transition (MET) and re-organise into acini-like structures, reminiscent of those formed by epithelial breast cells. We subsequently show, using an inducible CBFß system, that the MET can be reversed, thus demonstrating the plasticity of CBFß-mediated EMT. Moreover, the MET can be reversed by expression of the EMT transcription factor Slug whose expression is dependent on CBFß. Finally, we demonstrate that loss of CBFß inhibits the ability of metastatic breast cancer cells to invade bone cell cultures and suppresses their ability to form bone metastases in vivo. Together our findings demonstrate that CBFß can determine the plasticity of the metastatic cancer cell phenotype, suggesting that its regulation in different micro-environments may play a key role in the establishment of metastatic tumours.


Assuntos
Neoplasias da Mama/patologia , Subunidade beta de Fator de Ligação ao Core/fisiologia , Metástase Neoplásica , Animais , Fator de Ligação a CCAAT , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Fenótipo
11.
Acta Oncol ; 59(2): 219-232, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31671026

RESUMO

Background: Breast cancer (BC) is one of the leading causes of cancer-related deaths worldwide. Standard therapies aim to disrupt pathways that regulate the growth and survival of BC cells. Therapeutic agents such as endocrine therapy target hormone dependent cancer cells and have shown to be suitable approaches in BC treatment. However, in the case of metastatic BC, curative options are limited, thus strategies have been explored to improve survival and clinical benefit. In this review we provide an up to date overview of the development of anti-cancer agents, particularly the newly developed CDK4/6 inhibitors.Material and methods: A search of PubMed was conducted to identify preclinical data surrounding the development of endocrine therapy and CDK4/6 inhibitors in early and metastatic BC. Clinical data were also sought using PubMed and clinicaltrials.gov.Results: Agents targeting oestrogen and its receptor have demonstrated positive outcomes in clinical trial with improvements in objective responses and overall survival. However, patients do exhibit adverse effects and some will eventually fail to respond to endocrine therapy. Subsequently, the development and success of 3rd generation CDK4/6 inhibitors in preclinical studies has allowed their introduction in clinical studies. In patients with ER + BC, CDK4/6 have demonstrated dramatic improvements in progression free survival when used in combination with endocrine therapies. Similar findings were also observed in metastatic disease. Adverse effects were limited in CDK4/6 treated patients, demonstrating the safety of these agents.Conclusion: CDK4/6 inhibitors are highly specific making them a safe and viable therapeutic for BC and there is increasing evidence of their potential to improve survival, even in the metastatic setting. Although a number of trials have demonstrated this, as a lone therapy or in combination, optimisation of treatment scheduling are still required in further clinical investigations.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/efeitos adversos , Antineoplásicos Hormonais/efeitos adversos , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Feminino , Humanos , Intervalo Livre de Progressão , Inibidores de Proteínas Quinases/efeitos adversos , Receptores de Estrogênio/metabolismo
12.
Breast Cancer Res ; 21(1): 130, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783893

RESUMO

BACKGROUND: Late-stage breast cancer preferentially metastasises to bone; despite advances in targeted therapies, this condition remains incurable. The lack of clinically relevant models for studying breast cancer metastasis to a human bone microenvironment has stunted the development of effective treatments for this condition. To address this problem, we have developed humanised mouse models in which breast cancer patient-derived xenografts (PDXs) metastasise to human bone implants with low variability and high frequency. METHODS: To model the human bone environment, bone discs from femoral heads of patients undergoing hip replacement surgery were implanted subcutaneously into NOD/SCID mice. For metastasis studies, 7 patient-derived xenograft tumours (PDX: BB3RC32, ER+ PR+ HER2-; BB2RC08, ER+ PR+ ER2-; BB6RC37, ER- PR- HER2- and BB6RC39, ER+ PR+ HER2+), MDA-MB-231-luc2, T47D-luc2 or MCF7-Luc2 cells were injected into the 4th mammary ducts and metastases monitored by luciferase imaging and confirmed on histological sections. Bone integrity, viability and vascularisation were assessed by uCT, calcein uptake and histomorphometry. Expression profiling of genes/proteins during different stages of metastasis were assessed by whole genome Affymetrix array, real-time PCR and immunohistochemistry. Importance of IL-1 was confirmed following anakinra treatment. RESULTS: Implantation of femoral bone provided a metabolically active, human-specific site for tumour cells to metastasise to. After 4 weeks, bone implants were re-vascularised and demonstrated active bone remodelling (as evidenced by the presence of osteoclasts, osteoblasts and calcein uptake). Restricting bone implants to the use of subchondral bone and introduction of cancer cells via intraductal injection maximised metastasis to human bone implants. MDA-MB-231 cells specifically metastasised to human bone (70% metastases) whereas T47D, MCF7, BB3RC32, BB2RC08, and BB6RC37 cells metastasised to both human bone and mouse bones. Importantly, human bone was the preferred metastatic site especially from ER+ PDX (100% metastasis human bone compared with 20-75% to mouse bone), whereas ER-ve PDX developed metastases in 20% of human and 20% of mouse bone. Breast cancer cells underwent a series of molecular changes as they progressed from primary tumours to bone metastasis including altered expression of IL-1B, IL-1R1, S100A4, CTSK, SPP1 and RANK. Inhibiting IL-1B signalling significantly reduced bone metastasis. CONCLUSIONS: Our reliable and clinically relevant humanised mouse models provide significant advancements in modelling of breast cancer bone metastasis.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Animais , Biomarcadores Tumorais , Biópsia , Neoplasias Ósseas/diagnóstico , Osso e Ossos/patologia , Neoplasias da Mama/metabolismo , Sobrevivência Celular , Feminino , Xenoenxertos , Humanos , Imuno-Histoquímica , Imunofenotipagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neovascularização Patológica , Microambiente Tumoral
13.
FASEB J ; 33(11): 12768-12779, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31490705

RESUMO

Zoledronic acid (ZOL) is an antiresorptive drug used to prevent bone loss in a variety of conditions, acting mainly through suppression of osteoclast activity. There is growing evidence that ZOL can also affect cells of the mesenchymal lineage in bone. We present novel data revealing significant changes in the abundance of perivascular mesenchymal stromal cells (MSCs)/osteoprogenitors and osteoblasts following the injection of ZOL, in vivo. In young mice with high bone turnover and an abundance of perivascular osteoprogenitors, ZOL significantly (P < 0.0001) increased new bone formation. This was accompanied by a decline in osterix-positive osteoprogenitors and a corresponding increase in osteoblasts. However, these effects were not observed in mature mice with low bone turnover. Interestingly, the ZOL-induced changes in cells of the mesenchymal lineage occurred independently of effects on the osteogenic vasculature. Thus, we demonstrate that a single, clinically relevant dose of ZOL can induce new bone formation in microenvironments enriched for perivascular MSC/osteoprogenitors and high osteogenic potential. This arises from the differentiation of perivascular osterix-positive MSC/osteoprogenitors into osteoblasts at sites that are innately osteogenic. Collectively, our data demonstrate that ZOL affects multiple cell types in bone and has differential effects depending on the level of bone turnover.-Hughes, R., Chen, X., Hunter, K. D., Hobbs, J. K., Holen, I., Brown, N. J. Bone marrow osteoprogenitors are depleted whereas osteoblasts are expanded independent of the osteogenic vasculature in response to zoledronic acid.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Ácido Zoledrônico/farmacologia , Animais , Medula Óssea/irrigação sanguínea , Medula Óssea/metabolismo , Feminino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Osteoblastos/citologia , Fator de Transcrição Sp7/metabolismo
14.
J Bone Oncol ; 17: 100244, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31236323

RESUMO

BACKGROUND: Bone metastasis is one of the most common complications of advanced breast cancer. During dissemination to bone, breast cancer cells locate in a putative 'metastatic niche', a microenvironment that regulates the colonisation, maintenance of tumour cell dormancy and subsequent tumour growth. The precise location and composition of the bone metastatic niche is not clearly defined. We have used in vivo models of early breast cancer dissemination to provide novel evidence that demonstrates overlap between endosteal, perivascular, HSC and the metastatic niche in bone. METHODS: Estrogen Receptor (ER) +ve and -ve breast cancer cells were labelled with membrane dyes Vybrant-DiD and Vybrant-CM-DiI and injected via different routes in BALBc/nude mice of different ages. Two-photon microscopy was used to detect and quantitate tumour cells and map their location within the bone microenvironment as well as their distance to the nearest bone surface compared to the nearest other tumour cell. To investigate whether the metastatic niche overlapped with the HSC niche, animals were pre-treated with the CXCR4 antagonist AMD3100 to mobilise hematopoietic (HSCs) prior to injection of breast cancer cells. RESULTS: Breast cancer cells displayed a characteristic pattern of homing in the long bones, with the majority of tumour cells seeded in the trabecular regions, regardless of the route of injection, cell-line characteristics (ER status) or animal age. Breast cancer cells located in close proximity to the nearest bone surface and the average distance between individual tumour cells was higher than their distance to bone. Mobilisation of HSCs from the niche to the circulation prior to injection of cell lines resulted in increased numbers of tumour cells disseminated in trabecular regions. CONCLUSION: Our data provide evidence that homing of breast cancer cells is independent of their ER status and that the breast cancer bone metastasis niche is located within the trabecular region of bone, an area rich in osteoblasts and microvessels. The increased number of breast cancer cells homing to bone after mobilisation of HSCs suggests that the HSC and the bone metastasis niche overlap.

15.
Clin Cancer Res ; 25(9): 2769-2782, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30670488

RESUMO

PURPOSE: Breast cancer bone metastases are incurable, highlighting the need for new therapeutic targets. After colonizing bone, breast cancer cells remain dormant, until signals from the microenvironment stimulate outgrowth into overt metastases. Here we show that endogenous production of IL1B by tumor cells drives metastasis and growth in bone. EXPERIMENTAL DESIGN: Tumor/stromal IL1B and IL1 receptor 1 (IL1R1) expression was assessed in patient samples and effects of the IL1R antagonist, Anakinra, or the IL1B antibody canakinumab on tumor growth and spontaneous metastasis were measured in a humanized mouse model of breast cancer bone metastasis. Effects of tumor cell-derived IL1B on bone colonization and parameters associated with metastasis were measured in MDA-MB-231, MCF7, and T47D cells transfected with IL1B/control. RESULTS: In tissue samples from >1,300 patients with stage II/III breast cancer, IL1B in tumor cells correlated with relapse in bone (HR = 1.85; 95% CI, 1.05-3.26; P = 0.02) and other sites (HR = 2.09; 95% CI, 1.26-3.48; P = 0.0016). In a humanized model of spontaneous breast cancer metastasis to bone, Anakinra or canakinumab reduced metastasis and reduced the number of tumor cells shed into the circulation. Production of IL1B by tumor cells promoted epithelial-to-mesenchymal transition (altered E-Cadherin, N-Cadherin, and G-Catenin), invasion, migration, and bone colonization. Contact between tumor and osteoblasts or bone marrow cells increased IL1B secretion from all three cell types. IL1B alone did not stimulate tumor cell proliferation. Instead, IL1B caused expansion of the bone metastatic niche leading to tumor proliferation. CONCLUSIONS: Pharmacologic inhibition of IL1B has potential as a novel treatment for breast cancer metastasis.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Interleucina-1beta/metabolismo , Microambiente Tumoral , Idoso , Animais , Apoptose , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Estudos de Casos e Controles , Proliferação de Células , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-1beta/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Clin Exp Metastasis ; 35(8): 831-846, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30377878

RESUMO

Metastatic recurrence in breast cancer is a major cause of mortality and often occurs many years after removal of the primary tumour. This process is driven by the reactivation of disseminated tumour cells that are characterised by mitotic quiescence and chemotherapeutic resistance. The ability to reliably isolate and characterise this cancer cell population is critical to enable development of novel therapeutic strategies for prevention of breast cancer recurrence. Here we describe the identification and characterisation of a sub-population of slow-cycling tumour cells in the MCF-7 and MDA-MB-231 human breast cancer cell lines based on their ability to retain the lipophilic fluorescent dye Vybrant® DiD for up to six passages in culture. Vybrant® DiD-retaining (DiD+) cells displayed significantly increased aldehyde dehydrogenase activity and exhibited significantly reduced sensitivity to chemotherapeutic agents compared to their rapidly dividing, Vybrant® DiD-negative (DiD-) counterparts. In addition, DiD+ cells were exclusively capable of initiating population re-growth following withdrawal of chemotherapy. The DiD+ population displayed only partial overlap with the CD44+CD24-/low cell surface protein marker signature widely used to identify breast cancer stem cells, but was enriched for CD44+CD24+ cells. Real-time qPCR profiling revealed differential expression of epithelial-to-mesenchymal transition and stemness genes between DiD+ and DiD- populations. This is the first demonstration that both MCF-7 and MDA-MB-231 human breast cancer lines contain a latent therapy-resistant population of slow-cycling cells capable of initiating population regrowth post-chemotherapy. Our data support that label-retaining cells can serve as a model for identification of molecular mechanisms driving tumour cell quiescence and de novo chemoresistance and that further characterisation of this prospective tumour-reinitiating population could yield novel therapeutic targets for elimination of the cells responsible for breast cancer recurrence.


Assuntos
Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/patologia , Coloração e Rotulagem/métodos , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes , Humanos
17.
Int J Mol Sci ; 19(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261597

RESUMO

Breast cancer cells colonize the skeleton by homing to specific niches, but the involvement of osteoblasts in tumour cell seeding, colonization, and progression is unknown. We used an in vivo model to determine how increasing the number of cells of the osteoblast lineage with parathyroid hormone (PTH) modified subsequent skeletal colonization by breast cancer cells. BALB/c nude mice were injected for five consecutive days with PBS (control) or PTH and then injected with DiD-labelled breast cancer cells via the intra-cardiac route. Effects of PTH on the bone microenvironment and tumour cell colonization and growth was analyzed using bioluminescence imaging, two-photon microscopy, and histological analysis. PTH treatment caused a significant, transient increase in osteoblast numbers compared to control, whereas bone volume/structure in the tibia was unaffected. There were no differences in the number of tumour cells seeding to the tibias, or in the number of tumours in the hind legs, between the control and PTH group. However, animals pre-treated with PTH had a significantly higher number of tumour colonies distributed throughout skeletal sites outside the hind limbs. This is the first demonstration that PTH-induced stimulation of osteoblastic cells may result in alternative skeletal sites becoming available for breast cancer cell colonization.


Assuntos
Osso e Ossos/efeitos dos fármacos , Neoplasias da Mama/patologia , Osteoblastos/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Animais , Apoptose/efeitos dos fármacos , Osso e Ossos/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência por Excitação Multifotônica , Tíbia/efeitos dos fármacos , Tíbia/patologia , Transplante Heterólogo
18.
Cancer Res ; 78(18): 5300-5314, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30065048

RESUMO

The presence of disseminated tumor cells in breast cancer patient bone marrow aspirates predicts decreased recurrence-free survival. Although it is appreciated that physiologic, pathologic, and therapeutic conditions impact hematopoiesis, it remains unclear whether targeting hematopoiesis presents opportunities for limiting bone metastasis. Using preclinical breast cancer models, we discovered that marrow from mice treated with the bisphosphonate zoledronic acid (ZA) are metastasis-suppressive. Specifically, ZA modulated hematopoietic myeloid/osteoclast progenitor cell (M/OCP) lineage potential to activate metastasis-suppressive activity. Granulocyte-colony stimulating factor (G-CSF) promoted ZA resistance by redirecting M/OCP differentiation. We identified M/OCP and bone marrow transcriptional programs associated with metastasis suppression and ZA resistance. Analysis of patient blood samples taken at randomization revealed that women with high-plasma G-CSF experienced significantly worse outcome with adjuvant ZA than those with lower G-CSF levels. Our findings support discovery of therapeutic strategies to direct M/OCP lineage potential and biomarkers that stratify responses in patients at risk of recurrence.Significance: Bone marrow myeloid/osteoclast progenitor cell lineage potential has a profound impact on breast cancer bone metastasis and can be modulated by G-CSF and bone-targeting agents. Cancer Res; 78(18); 5300-14. ©2018 AACR.


Assuntos
Células da Medula Óssea/citologia , Neoplasias da Mama/patologia , Linhagem da Célula , Células-Tronco Hematopoéticas/citologia , Metástase Neoplásica/prevenção & controle , Animais , Antineoplásicos/farmacologia , Biomarcadores/metabolismo , Medula Óssea/patologia , Neoplasias Ósseas/prevenção & controle , Diferenciação Celular , Linhagem Celular Tumoral , Feminino , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hematopoese , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Recidiva Local de Neoplasia , Osteoclastos/citologia , Osteoclastos/metabolismo , Ácido Zoledrônico/farmacologia
19.
Expert Rev Mol Diagn ; 18(3): 227-243, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29424261

RESUMO

INTRODUCTION: Numerous clinical and pre-clinical studies have provided ample evidence supporting that the tumor microenvironment plays a significant role during breast cancer development, progression and in determining the therapeutic response. Areas covered: This review focuses on the evolving concept of the microenvironment as the critical participant in each step of the multi-stage process of malignant progression. Currently, only a small number of molecules form part of routine molecular diagnostics in breast caner, but microenvironment-derived biomarkers are potential additions to existing predictive and prognostic marker panels. The authors discuss the dependency of the breast tumor cells on different components of the microenvironment for their survival, dissemination, dormancy and establishment in secondary sites to form overt metastasis, as well as the potential as a therapeutic target to improve breast cancer outcome. Expert commentary: Despite the importance in the development of breast cancer, the contribution of the microenvironment is not considered in routine diagnostic testing or informing therapeutic decisions. However, introduction of immunotherapy will increasingly require patient selection based on the stromal composition of the primary breast tumor. Better understanding of the role of specific microenvironment-derived molecules is likely to inform personalized therapy, leading to improved patient outcome.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/metabolismo , Microambiente Tumoral , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Feminino , Humanos
20.
Dis Model Mech ; 10(4): 359-371, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381598

RESUMO

Research using animal model systems has been instrumental in delivering improved therapies for breast cancer, as well as in generating new insights into the mechanisms that underpin development of the disease. A large number of different models are now available, reflecting different types and stages of the disease; choosing which one to use depends on the specific research question(s) to be investigated. Based on presentations and discussions from leading experts who attended a recent workshop focused on in vivo models of breast cancer, this article provides a perspective on the many varied uses of these models in breast cancer research, their strengths, associated challenges and future directions. Among the questions discussed were: how well do models represent the different stages of human disease; how can we model the involvement of the human immune system and microenvironment in breast cancer; what are the appropriate models of metastatic disease; can we use models to carry out preclinical drug trials and identify pathways responsible for drug resistance; and what are the limitations of patient-derived xenograft models? We briefly outline the areas where the existing breast cancer models require improvement in light of the increased understanding of the disease process, reflecting the drive towards more personalised therapies and identification of mechanisms of drug resistance.


Assuntos
Pesquisa Biomédica , Neoplasias da Mama/patologia , Animais , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Feminino , Engenharia Genética , Humanos , Terapia de Alvo Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...