Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(24): 25513-25538, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911776

RESUMO

Within the scope of this review, our exploration spans diverse facets of amphiphilic glycolipid-based low-molecular-weight gelators (LMWGs). This journey explores glycolipid synthesis, self-assembly, and gelation with tailorable properties. It begins by examining the design of glycolipids and their influence on gel formation. Following this, a brief exploration of several gel characterization techniques adds another layer to the understanding of these materials. The final section is dedicated to unraveling the various applications of these glycolipid-based supramolecular gels. A meticulous analysis of available glycolipid gelators and their correlations with desired properties for distinct applications is a pivotal aspect of their investigation. As of the present moment, there exists a notable absence of a review dedicated exclusively to glycolipid gelators. This study aims to bridge this critical gap by presenting an overview that provides novel insights into their unique properties and versatile applications. This holistic examination seeks to contribute to a deeper understanding of molecular design, structural characteristics, and functional applications of glycolipid gelators by offering insights that can propel advancements in these converging scientific disciplines. Overall, this review highlights the diverse classifications of glycolipid-derived gelators and particularly emphasizes their capacity to form gels.

2.
Soft Matter ; 19(33): 6305-6313, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555430

RESUMO

Recovery, recycling, and reuse of metal waste have been re-intensified in the current era to build a sustainable future. In this context, gel nanocomposites were formulated by in situ reduction of gold within the low molecular weight gel matrix of synthetic glycolipid amphiphiles without using any external reducing/stabilizing agents. This strategy aroused the interest in formulating gel nanocomposites with preferential uptake of gold. The exclusive advantages owned by gold nanoparticle (GNP) embedded hydrogel offer an alternative to decorate the electrode surface without physical deposition/plating of the catalyst. Formation of GNP within the gel matrix was confirmed by the SPR peak in the UV-Visible spectrum. The particle size of 5-7 nm with zeta potential value in the range of -30.5 to -41.4 mV displayed good stability of nanoparticles in the gel matrix. Due to the encapsulation of nanoparticles within supramolecular assemblies of gel, a noteworthy increase in viscoelastic strength was observed, whereas the gelation behavior, melting temperature, and original fibrillar morphology of hydrogel remained intact. This hybrid gel exhibited good ionic conductivity (2.36 × 10-5 S cm-1) with appreciable ionic transport, remarkable oxygen reduction reaction (ORR) augmentation in reduction potential from 0 V to -0.12 V vs. Ag/AgCl as reference electrode, and excellent thermal stability in a wide temperature range. This green and efficient approach can pave the way for creating GNP-embedded hierarchical architecture that can act as bifunctional electrolyte/electrocatalyst material.

3.
ACS Biomater Sci Eng ; 8(3): 1103-1114, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35196000

RESUMO

Designing of supramolecular hydro-/organogels having desired properties, biocompatibility, and stimuli responsiveness is a challenging task. Herein, the gelation ability of amphiphilic glycolipid-based gelators in a wide range of solvents is explored. The structure-function relationship was established by varying the chain length and polar headgroup size of amphiphilic gelators. The prepared hydro-/organogels were characterized by employing several techniques such as differential scanning calorimetry (DSC), rheology, field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), etc. The thermal stability of hydro-/organogels increased with an increase in chain length. Rheological analysis depicted that variation in chain length and headgroup size of amphiphilic gelators significantly affected the gel strength and stability. The self-assembled morphology of hydro-/organogel samples revealed the compact entangled fibrillar network structures. After comparing the energy-minimized molecular length with the d-spacing value obtained by XRD, interdigitated bilayer packing in the gel network was established. The bioactive encapsulation and enzymatic release study of hydro-/organogels portrayed their potential application in the biomedical field. To our delight, glycolipid 16M (C16 chain length) formed a molecular hydrogel with injectable and thixotropic behaviors. High critical strain value, thixotropy, injectability, thermoreversibility, and faster bioactive release for the 16M-W hydrogel proved crucial to predict its future applications. Overall, glycolipid amphiphiles designed by upholding proper hydrophilic-lipophilic balance can form multifunctional supramolecular hydrogels with excellent implementation in the drug delivery system.


Assuntos
Glicolipídeos , Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Reologia , Solventes/química
4.
Langmuir ; 36(12): 3080-3088, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32134673

RESUMO

Designing of multifunctional soft and smart materials from natural sources is a useful strategy for producing safer chemicals having potential applications in biomedical research and pharmaceutical industries. Herein, eight glycolipids with variation in unsaturation of hydrophobic tail and polar headgroup size were designed. The effect of unsaturation in the tail group and headgroup size on gelation ability, and mechanical and thermal stability of glycolipid hydro/organogels was studied to understand structure and property relationship. Glycolipids are functional amphiphilic molecules having potential applications in the field of drug delivery and metal removal. The encapsulation capacity and kinetic release behavior of hydrophobic/hydrophilic bioactives like curcumin/riboflavin from the hydrophobic/hydrophilic pockets of glycolipids hydro/organogels was examined. A significant observation was that the glucamine moiety of the glycolipid headgroup plays a vital role in removal of Cr and Cu from oil/water biphasic systems. Typical functions of the glycolipid hydrogels are metal chelation and enzyme-triggered release behavior, enabled them as promising material for Cr, Cu removal from edible oils and controlled release of water soluble/insoluble bioactives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...