Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 57(20): 12501-12508, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30265522

RESUMO

We bring together ac susceptibility and dc magnetization to uncover the rich magnetic field-temperature behavior of a series of rare earth indium oxides, RInO3 (R = Tb, Dy, and Gd). The degree of frustration is much larger than expected, particularly in TbInO3, and the ground states are glasslike with antiferromagnetic tendencies. The activation energy for spin reorientation is low. Chemical substitution with Mn3+ ions to form TbIn1- xMn xO3 ( x ≤ 0.01) relieves much of the frustration that characterizes the parent compound and slightly enhances the short-range antiferromagnetic order. The phase diagrams developed from this work reveal the rich competition between spin orders and provide an opportunity to compare the dynamics in the RInO3 and Mn-substituted systems. These structure-property relations may be useful for understanding magnetism in other geometrically frustrated multiferroics.

2.
APL Mater ; 6(6): 066110, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32551187

RESUMO

We combine magnetic circular dichroism and photoconductivity with prior optical absorption and first principles calculations to unravel spin-charge interactions in the high Curie temperature magnet CoFe2O4. In addition to revising the bandgap hierarchy, we reveal a broad set of charge transfer excitations in the spin down channel which are sensitive to the metamagnetic transition involving the spin state on Co centers. We also show photoconductivity that depends on an applied magnetic field. These findings open the door for the creation and control of spin-polarized electronic excitations from the minority channel charge transfer in spinel ferrites and other earth-abundant materials.

3.
Inorg Chem ; 55(23): 12172-12178, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934427

RESUMO

Magnetoelastic coupling in the quantum magnet [Ni(HF2)(pyrazine)2]SbF6 has been investigated via vibrational spectroscopy using temperature, magnetic field, and pressure as tuning parameters. While pyrazine is known to be a malleable magnetic superexchange ligand, we find that HF2- is surprisingly sensitive to external stimuli and is actively involved in both the magnetic quantum phase transition and the series of pressure-induced structural distortions. The amplified spin-lattice interactions involving the bifluoride ligand can be understood in terms of the relative importance of the intra- and interplanar magnetic energy scales.

4.
Biometals ; 22(4): 625-32, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19350395

RESUMO

Siderophore production by marine-derived fungi has not been extensively explored. Three studies have investigated the ability of marine-derived fungi to produce siderophores in response to iron limitation [(Vala et al. in Indian J Mar Sci 29:339-340, 2000; Can J Microbiol 52:603-607, 2006); Baakza et al. in J Exp Mar Biol Ecol 311:1-9, 2004]. In all, 24 of 28 marine fungal strains were found to secrete hydroxamate or carboxylate siderophores; no evidence was found for production of catecholate siderophores. These studies did not determine the structures of the iron-binding compounds. More recently, a study of the natural products secreted by a marine Penicillium bilaii revealed that this strain produced the rare catecholate siderophore pistillarin when grown under relatively high iron concentrations (Capon et al. J Nat Prod 70:1746-1752, 2007). Additionally, the production of rhizoferrin by a marine isolate of Cunninghamella elegans (ATCC36112) is reported in this manuscript. The current state of knowledge about marine fungal siderophores is reviewed in light of these promising results.


Assuntos
Fungos/metabolismo , Sideróforos/biossíntese , Microbiologia da Água , Compostos Férricos/metabolismo , Biologia Marinha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...