Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 2): 127694, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898248

RESUMO

To explore the possibility of applying lignin in practice, an industrial lignosulfonate (0-50 vol%) was blended with four ionomers. The concentrations of carboxyl and carboxylate groups were systematically varied in the ethylene-acrylic acid copolymers to study the competition of hydrogen and ionic bonds forming between the components. The mechanical properties of the blends were determined by tensile testing. The structure was investigated by scanning electron microscopy, while deformation and failure processes were studied by acoustic emission measurements and microscopy. Interfacial interactions were quantitatively characterized by analyzing local deformation processes and by evaluating the composition dependence of the tensile strength using appropriate models. Molecular dynamics simulations indicated that carboxylate groups preferably form clusters in the ionomer phase, consequently, the increasing degree of neutralization results in ionomers with more and more self-interactions of components deteriorating ionomer-lignin interactions. The novel combination of experiments, modeling, and simulation was done for the first time on such materials, and it pointed out that the role of hydrogen bonds is more critical in determining blend properties. Blends can be prepared for practical applications with a good combination of stiffness (0.8 GPa), tensile strength (22 MPa), and elongation-at-break (25 %) at 30 vol% lignosulfonate content and 33 % neutralization.


Assuntos
Lignina , Polímeros , Polímeros/química , Lignina/química , Resistência à Tração
2.
Molecules ; 28(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894642

RESUMO

The reactive P-N bond in 1-phospha-2-azanorbornenes is readily cleaved by simple alcohols to afford P-chiral 2,3-dihydrophosphole derivatives as a racemic mixture. The isolation of the products was not possible due to the reversibility of the reaction, which could, however, be stopped by sulfurization of the phosphorus atom, thus efficiently blocking the lone pair of electrons, as exemplified for 6b yielding structurally characterized 8b. Additionally, the influence of the substituent in the α position to the phosphorus atom (H, Ph, 2-py, CN) on the reversibility of the reaction was studied. Extensive theoretical calculations for understanding the ring-closing mechanism suggested that a multi-step reaction with one or more intermediates was most probable.

3.
ChemSusChem ; 16(20): e202300535, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37364035

RESUMO

Mixing weak acids and bases can produce highly complicated binary mixtures, called pseudo-protic ionic liquids, in which a complex network of effects determines the physicochemical properties that are currently impossible to predict. In this joint computational-experimental study, we investigated 1-methylimidazole-acetic acid mixtures through the whole concentration range. Effects of the varying ionization and excess of either components on the properties, such as density, diffusion coefficients, and overall hydrogen bonding structure were uncovered. A special emphasis was put on understanding the multiple factors that govern the conductivity of the system. In the presence of an excess of acetic acid, the 1-methylimidazolium acetate ion pairs dissociate more efficiently, resulting in a higher concentration of independently moving, conducting ions. However, the conductivity measurements showed that higher concentrations of acetic acid improve the conductivity beyond this effect, suggesting in addition to standard dilution effects the occurrence of Grotthuss diffusion in high acid-to-base ratios. The results here will potentially help designing novel electrolytes and proton conducting systems, which can be exploited in a variety of applications.

4.
Nanomaterials (Basel) ; 13(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110989

RESUMO

Humans are continuously exposed to polymeric materials such as in textiles, car tires and packaging. Unfortunately, their break down products pollute our environment, leading to widespread contamination with micro- and nanoplastics (MNPs). The blood-brain barrier (BBB) is an important biological barrier that protects the brain from harmful substances. In our study we performed short term uptake studies in mice with orally administered polystyrene micro-/nanoparticles (9.55 µm, 1.14 µm, 0.293 µm). We show that nanometer sized particles-but not bigger particles-reach the brain within only 2 h after gavage. To understand the transport mechanism, we performed coarse-grained molecular dynamics simulations on the interaction of DOPC bilayers with a polystyrene nanoparticle in the presence and absence of various coronae. We found that the composition of the biomolecular corona surrounding the plastic particles was critical for passage through the BBB. Cholesterol molecules enhanced the uptake of these contaminants into the membrane of the BBB, whereas the protein model inhibited it. These opposing effects could explain the passive transport of the particles into the brain.

5.
Expo Health ; 15(1): 33-51, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873245

RESUMO

Micro- and nanoplastics (MNPs) are recognized as emerging contaminants, especially in food, with unknown health significance. MNPs passing through the gastrointestinal tract have been brought in context with disruption of the gut microbiome. Several molecular mechanisms have been described to facilitate tissue uptake of MNPs, which then are involved in local inflammatory and immune responses. Furthermore, MNPs can act as potential transporters ("vectors") of contaminants and as chemosensitizers for toxic substances ("Trojan Horse effect"). In this review, we summarize current multidisciplinary knowledge of ingested MNPs and their potential adverse health effects. We discuss new insights into analytical and molecular modeling tools to help us better understand the local deposition and uptake of MNPs that might drive carcinogenic signaling. We present bioethical insights to basically re-consider the "culture of consumerism." Finally, we map out prominent research questions in accordance with the Sustainable Development Goals of the United Nations.

6.
Chemistry ; 29(18): e202300502, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36861950

RESUMO

Invited for the cover of this issue are Oldamur Hollóczki and co-workers at the Universities of Bonn, Ghent and Debrecen. The image depicts the search of an ionic base for the acidic proton of an imidazolium cation in order to form a carbene complex. Read the full text of the article at 10.1002/chem.202203636.

7.
Molecules ; 28(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36985546

RESUMO

Two heterobimetallic Mo,M' complexes (M' = IrIII, RhIII) were synthesized and fully characterized. Their catalytic activity in homogeneous carbon dioxide hydrogenation to formate was studied. A pronounced synergistic effect between the two metals was found, most notably between Mo and Ir, leading to a fourfold increase in activity compared with a binary mixture of the two monometallic counterparts. This synergism can be attributed to spatial proximity of the two metals rather than electronic interactions. To further understand the nature of this interaction, the mechanism of the CO2 hydrogenation to formate by a monometallic IrIII catalyst was studied using computational and spectroscopic methods. The resting state of the reaction was found to be the metal-base adduct, whereas the rate-determining step is the inner-sphere hydride transfer to CO2. Based on these findings, the synergism in the heterobimetallic complex is beneficial in this key step, most likely by further activating the CO2.

8.
Chemistry ; 29(18): e202203636, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36655873

RESUMO

The mechanism of metal-N-heterocyclic carbene (NHC) complex formation from imidazolium salts in the presence of weak bases was investigated through theoretical methods. Quantum chemical calculations revealed that the two bases considered here, sodium acetate and trimethylamine, both facilitate complex formation. In contrast to previous experiments, these calculations indicated a slightly lower barrier with the amine. Molecular dynamics simulations showed that the ionic nature of the [AuCl2 ]- and imidazolium ions, as well as the sodium acetate base keep these species associated in the reaction mixture through ion pairing. This pre-association of the components produces those clusters that are essential for the metal complex formation reaction. The neutral amine, however, remains mostly separated from the other reaction partners, making it a significantly less effective base.

9.
Inorg Chem ; 62(4): 1667-1678, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36651698

RESUMO

The dissolution of gray selenium in tetraalkylphosphonium acetate ionic liquids was investigated by UV-vis, NMR, and Raman spectroscopy as well as quantum chemical calculations and electrochemical methods. Acetate anions and tetraalkylphosphonium cations facilitate the formation and stabilization of oligoselenides Sen2- and cationic Se species in the ionic liquid phase. Chemical exchange of selenium atoms was demonstrated by variable-temperature 77Se NMR experiments. Additionally, uncharged cycloselenium molecules exist at high selenium concentrations. Upon dilution with ethanol, amorphous red selenium precipitates from the solution. Moreover, crystalline Se1-xTex solid solutions precipitate when elemental tellurium is added to the mixture as confirmed by powder X-ray diffraction and Raman spectroscopy.

10.
Molecules ; 27(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35056686

RESUMO

A new pyclen-3,9-diacetate derivative ligand (H23,9-OPC2A) was synthesized possessing an etheric O-atom opposite to the pyridine ring, to improve the dissociation kinetics of its Mn(II) complex (pyclen = 3,6,9,15-tetraazabicyclo(9.3.1)pentadeca-1(15),11,13-triene). The new ligand is less basic than the N-containing analogue (H23,9-PC2A) due to the non-protonable O-atom. In spite of its lower basicity, the conditional stability of the [Mn(3,9-OPC2A)] (pMn = -log(Mn(II)), cL = cMn(II) = 0.01 mM. pH = 7.4) remains unaffected (pMn = 8.69), compared to the [Mn(3,9-PC2A)] (pMn = 8.64). The [Mn(3,9-OPC2A)] possesses one water molecule, having a lower exchange rate with bulk solvents (kex298 = 5.3 ± 0.4 × 107 s-1) than [Mn(3,9-PC2A)] (kex298 = 1.26 × 108 s-1). These mild differences are rationalized by density-functional theory (DFT) calculations. The acid assisted dissociation of [Mn(3,9-OPC2A)] is considerably slower (k1 = 2.81 ± 0.07 M-1 s-1) than that of the complexes of diacetates or bisamides of various 12-membered macrocycles and the parent H23,9-PC2A. The [Mn(3,9-OPC2A)] is inert in rat/human serum as confirmed by 52Mn labeling (nM range), as well as by relaxometry (mM range). However, a 600-fold excess of EDTA (pH = 7.4) or a mixture of essential metal ions, propagated some transchelation/transmetalation in 7 days. The H23,9-OPC2A is labeled efficiently with 52Mn at elevated temperatures, yet at 37 °C the parent H23,9-PC2A performs slightly better. Ultimately, the H23,9-OPC2A shows advantageous features for further ligand designs for bifunctional chelators.

11.
J Phys Chem B ; 126(4): 766-777, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35034453

RESUMO

The theoretical treatment of ionic liquids must focus now on more realistic models while at the same time keeping an accurate methodology when following recent ionic liquids research trends or allowing predictability to come to the foreground. In this Perspective, we summarize in three cases of advanced ionic liquid research what methodological progress has been made and point out difficulties that need to be overcome. As particular examples to discuss we choose reactions, chirality, and radicals in ionic liquids. All these topics have in common that an explicit or accurate treatment of the electronic structure and/or intermolecular interactions is required (accurate methodology), while at the same time system size and complexity as well as simulation time (realistic model) play an important role and must be covered as well.


Assuntos
Líquidos Iônicos , Simulação por Computador , Líquidos Iônicos/química
12.
J Org Chem ; 87(3): 1867-1873, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34319732

RESUMO

By simulating butan-2-ol dissolved in the chiral ionic liquid 1-ethyl-3-methylimidazolium (S)-alaninate, we investigate the chiral recognition of butan-2-ol in the ionic liquid. The hydrogen bonding between the chiral anion and both enantiomers of butan-2-ol is similar; however, both chiral molecules (anion and alcohol) induce an asymmetry in the achiral cation which leads to a more favorable environment for the alcohol in the heterochiral system as compared to the homochiral system and hence provides an energetic stabilization of the former.


Assuntos
Líquidos Iônicos , Cátions , Etanol , Ligação de Hidrogênio , Estereoisomerismo
13.
Chemphyschem ; 23(1): e202100620, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34632686

RESUMO

Binary mixtures of hexafluoroisopropanol with either methanol or acetone are analyzed via classical molecular dynamics simulations and quantum cluster equilibrium calculations. In particular, their populations and thermodynamic properties are investigated with the binary quantum cluster equilibrium method, using our in-house code Peacemaker 2.8, upgraded with temperature-dependent parameters. A novel approach, where the final density from classical molecular dynamics, has been used to generate the necessary reference isobars. The hydrogen bond network in both type of mixtures at molar fraction of hexafluoroisopropanol of 0.2, 0.5, and 0.8 respectively is investigated via the molecular dynamics trajectories and the cluster results. In particular, the populations show that mixed clusters are preferred in both systems even at 0.2 molar fractions of hexafluoroisopropanol. Enthalpies and entropies of vaporization are calculated for the neat and mixed systems and found to be in good agreement with experimental values.


Assuntos
Metanol , Simulação de Dinâmica Molecular , Acetona , Análise por Conglomerados , Hidrocarbonetos Fluorados , Ligação de Hidrogênio , Propanóis , Termodinâmica , Volatilização
14.
Chemistry ; 28(7): e202103770, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890100

RESUMO

Elemental tellurium readily dissolves in ionic liquids (ILs) based on tetraalkylphosphonium cations even at temperatures below 100 °C. In the case of ILs with acetate, decanoate, or dicyanamide anions, dark red to purple colored solutions form. A study combining NMR, UV-Vis and Raman spectroscopy revealed the formation of tellurium anions (Ten )2- with chain lengths up to at least n=5, which are in dynamic equilibrium with each other. Since external influences could be excluded and no evidence of an ionic liquid reaction was found, disproportionation of the tellurium is the only possible dissolution mechanism. Although the spectroscopic detection of tellurium cations in these solutions is difficult, the coexistence of tellurium cations, such as (Te4 )2+ and (Te6 )4+ , and tellurium anions could be proven by cyclic voltammetry and electrodeposition experiments. DFT calculations indicate that electrostatic interactions with the ions of the ILs are sufficient to stabilize both types of tellurium ions in solution.

15.
ChemSusChem ; 13(20): 5449-5459, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32780462

RESUMO

Plastic waste in the ocean and on land in the form of nanoplastics is endangering food and drinking water supplies, raising the need for new strategies for the removal of plastic nanoparticles from complex media. In the present contribution we suggest considering ionic liquids as extractants, since they show several advantageous properties that may facilitate the design of efficient separation processes. Through varying the anion and the side chain at the cation, the interactions between the extractant and the polymer can be strengthened and tuned, and thereby the disintegration of the particle into separate polymer chains can be controlled. Oxidized moieties can also be efficiently solvated, given the amphiphilic nature of the considered ionic liquids, allowing also realistic particles to be extracted into these solvents. The phase transfer was found to be thermodynamically and kinetically possible, which is supported by the complicated structure of the ionic liquid-water interface through the rearrangement of the interfacial ions, and the formation of a micelle around the plastic already at the edge of the aqueous phase.


Assuntos
Líquidos Iônicos/química , Extração Líquido-Líquido/métodos , Microplásticos/química , Ânions/química , Cátions/química , Micelas , Conformação Molecular , Simulação de Dinâmica Molecular , Polímeros/química , Solventes/química , Termodinâmica
16.
J Phys Chem B ; 124(35): 7647-7658, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32790399

RESUMO

A deep eutectic solvent (DES) entrapped in a bacterial cellulose (BC) network gives rise to a gelatin-like, self-supported material termed a bacterial cellulose eutectogel (BCEG). Although this novel material holds potential for numerous industrial, environmental, energy, or medical applications, little is known about the structural features or dynamical behavior within a eutectogel. In this work, we employ X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and small-angle neutron scattering (SANS) to probe the structural and diffusive behavior of the prevailing DES glyceline (1:2 molar ratio of choline chloride:glycerol) confined within bacterial cellulose. XRD investigations demonstrate that the bacterial cellulose maintains its crystallinity even as the glyceline content approaches 95 wt % in the BCEG, an outcome corroborated by molecular dynamics (MD) simulations, which suggest minimal changes in the structural features of the cellulose chains due to the presence of glyceline. SANS measurements reveal a significant reduction in the radius of gyration (Rg) for BC in a BCEG compared to its hydrogel analogue, indicating a collapse in the microfibrillar structure that we attribute to removal of waters from the interfibrillar space due to a higher affinity of DES for water than for cellulose. Furthermore, SANS experiments suggest that the vast majority of DES is hosted within large micropores in the BCEG (i.e., mesoscopic confinement). Interestingly, proton NMR experiments disclose faster diffusional rates for choline and glycerol entrapped in a BCEG compared to neat glyceline. MD simulations offer the possible explanation that this diffusional acceleration results from significant migration of chloride from the bulk to cellulose microfibrillar surfaces, thereby reducing hydrogen bonding with choline and glycerol partners. This study provides the first comprehensive investigation into the structure and diffusional dynamics of glyceline within a eutectogel, offering insights into mass transport that should be useful for tailoring these novel materials to potential applications.


Assuntos
Celulose , Simulação de Dinâmica Molecular , Difusão , Géis , Espalhamento a Baixo Ângulo
17.
Chemistry ; 26(44): 10140-10151, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32608090

RESUMO

In this work the mechanism of the aldehyde umpolung reactions, catalyzed by azolium cations in the presence of bases, was studied through computational methods. Next to the mechanism established by Breslow in the 1950s that takes effect through the formation of a free carbene, we have suggested that these processes can follow a concerted asynchronous path, in which the azolium cation directly reacts with the substrate, avoiding the formation of the carbene intermediate. We hereby show that substituting the azolium cation, and varying the base or the substrate do not affect the preference for the concerted reaction mechanism. The concerted path was found to exhibit low barriers also for the reactions of thiamine with model substrates, showing that this path might have biological relevance. The dominance of the concerted mechanism can be explained through the specific structure of the key transition state, avoiding the liberation of the highly reactive, and thus unstable carbene lone pair, whereas activating the substrate through hydrogen-bonding interactions. Polar and hydrogen-bonding solvents, as well as the presence of the counterions of the azolium salts facilitate the reaction through carbenes, bringing the barriers of the two reaction mechanisms closer, in many cases making the concerted path less favorable. Thus, our data show that by choosing the exact components in a reaction, the mechanism can be switched to occur with or without carbenes.

18.
Phys Chem Chem Phys ; 22(19): 10726-10737, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32150178

RESUMO

Ionic liquids and their mixtures with water show remarkable features in cellulose processing. For this reason, understanding the behavior of carbohydrates in ionic liquids is important. In the present study, we investigated three d-glucose isomers (α, ß and open-chain) in 1-ethyl-3-methylimidazolium acetate in the presence and absence of water, through ab initio molecular dynamics simulations. In the complex hydrogen bonding network of these mixtures, the most interesting observation is that upon water addition every hydrogen bond elongates, except the glucose-glucose hydrogen bond for the open-chain and the α-form which shortens, clearly showing the beginning of the crystallization process. The ring glucose rearranges from on-top to in-plane and the open form changes from a coiled to a more linear arrangement when adding water which explains the contradiction that the center of mass distances of the glucose molecules with other glucose molecules grow while the hydrogen bonds shorten. The appearance of coiled open forms indicates that the previously suggested isomerization between these forms is possible and might play a role in the solubility of the related carbohydrates. The calculated IR and VCD spectra reveal insight into the intermolecular interactions, with good to excellent agreements with experimental spectra. Investigating the role of the cation, distances between the acidic carbon atom of the cation and the glucose carbon atom where ring closure and opening occurs are found, which are way shorter than dispersion-like interactions between aliphatic hydrocarbons.

19.
Chemphyschem ; 21(1): 9-12, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31483076

RESUMO

Whilst the formation of plastic nanoparticles (nanoplastics) from plastic wastes has been unequivocally evidenced, little is known about the effects of these materials on living organisms at the subcellular or molecular levels. In the present contribution we show through molecular dynamics simulations that polyethylene nanoparticles dissolve in the hydrophobic core of lipid bilayers into a network of disentangled, single polymeric chains. The thereby induced structural and dynamic changes in the bilayer alter vital functions of the cell membrane, which if lacking a mechanism to decompose the polymer chains may result in the death of the cell.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Nanopartículas/química , Polietileno/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular
20.
Chemistry ; 26(22): 4885-4894, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31797448

RESUMO

The term "N-Heterocyclic carbene organocatalysis" is often invoked in organic synthesis for reactions that are catalyzed by different azolium salts in the presence of bases. Although the mechanism of these reactions is considered today evident, a closer look into the details that have been collected throughout the last century reveals that there are many open questions and even contradictions in the field. Emerging new theoretical and experimental results offer solutions to these problems, because they show that through considering alternative reaction mechanisms a more consistent picture on the catalytic process can be obtained. These novel perspectives will be able to extend the scope of the reactions that we call today N-heterocyclic carbene organocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...