Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem ; 10(6): 1655-1667, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38966253

RESUMO

The reduction of CO2 with low overpotential and high selectivity is a crucial challenge in catalysis. Fortunately, natural systems have evolved enzymes that achieve this catalytic reaction very efficiently at a complex nickel-iron-sulfur cluster within carbon monoxide dehydrogenase (CODH). Extensive biochemical, crystallographic, and spectroscopic work has been done to understand the structures and mechanism involved in the catalytic cycle, which are summarized here from the perspective of mechanistic organometallic chemistry. We highlight the ambiguities in the data and suggest experiments that could lead to clearer understanding of the mechanism and structures of intermediates at the active-site cluster. These include parallel crystallography and spectroscopy, as well as the preparation of synthetic analogues that help to interpret structural and spectroscopic signatures.

2.
Nat Catal ; 7(3): 321-329, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38855712

RESUMO

Catalytic cross-coupling by transition metals has revolutionized the formation of C-C bonds in organic synthesis. However, the challenge of forming multiple alkyl-alkyl bonds in crowded environments remains largely unresolved. Here, we report the regioselective functionalization of olefins with sp3-hybridized organohalides and organozinc reagents using a simple (terpyridine)iron catalyst. Aliphatic groups of various sizes are successfully installed on either olefinic carbon, furnishing a diverse array of products with congested cores featuring C- or heteroatom-substituted stereocenters. The method enables access to valuable but synthetically challenging C(sp3)-rich molecules, including alicyclic compounds bearing multiple contiguous stereocenters through annulation cascades. Mechanistic and theoretical studies suggest a stepwise iron-mediated radical carbometallation pathway followed by outer-sphere C-C bond formation, which potentially opens the door to a broader scope of transformations and new chemical space.

3.
J Am Chem Soc ; 146(25): 17296-17310, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38875703

RESUMO

Asymmetric hydrogenation of activated olefins using transition metal catalysis is a powerful tool for the synthesis of complex molecules, but traditional metal catalysts have difficulty with enantioselective reduction of electron-neutral, electron-rich, and minimally functionalized olefins. Hydrogenation based on radical, metal-catalyzed hydrogen atom transfer (mHAT) mechanisms offers an outstanding opportunity to overcome these difficulties, enabling the mild reduction of these challenging olefins with selectivity that is complementary to traditional hydrogenations with H2. Further, mHAT presents an opportunity for asymmetric induction through cooperative hydrogen atom transfer (cHAT) using chiral thiols. Here, we report insights from a mechanistic study of an iron-catalyzed achiral cHAT reaction and leverage these insights to deliver stereocontrol from chiral thiols. Kinetic analysis and variation of silane structure point to the transfer of hydride from silane to iron as the likely rate-limiting step. The data indicate that the selectivity-determining step is quenching of the alkyl radical by thiol, which becomes a more potent H atom donor when coordinated to iron(II). The resulting iron(III)-thiolate complex is in equilibrium with other iron species, including FeII(acac)2, which is shown to be the predominant off-cycle species. The enantiodetermining nature of the thiol trapping step enables enantioselective net hydrogenation of olefins through cHAT using a commercially available glucose-derived thiol catalyst with up to 80:20 enantiomeric ratio. To the best of our knowledge, this is the first demonstration of asymmetric hydrogenation via iron-catalyzed mHAT. These findings advance our understanding of cooperative radical catalysis and act as a proof of principle for the development of enantioselective iron-catalyzed mHAT reactions.

4.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559065

RESUMO

The self-assembly of Tau(297-391) into filaments, which mirror the structures observed in Alzheimer's disease (AD) brains, raises questions about the role of AD-specific post-translational modifications (PTMs) in the formation of paired helical filaments (PHFs). To investigate this, we developed a synthetic approach to produce Tau(291-391) featuring N-acetyllysine, phosphoserine, phosphotyrosine, and N-glycosylation at positions commonly modified in post-mortem AD brains, thus facilitating the study of their roles in Tau pathology. Using transmission electron microscopy (TEM), cryo-electron microscopy (cryo-EM), and a range of optical microscopy techniques, we discovered that these modifications generally hinder the in vitro assembly of Tau into PHFs. Interestingly, while acetylation's effect on Tau assembly displayed variability, either promoting or inhibiting phase transitions in the context of cofactor free aggregation, heparin-induced aggregation, and RNA-mediated liquid-liquid phase separation (LLPS), phosphorylation uniformly mitigated these processes. Our observations suggest that PTMs, particularly those situated outside the fibril's rigid core are pivotal in the nucleation of PHFs. Moreover, in scenarios involving heparin-induced aggregation leading to the formation of heterogeneous aggregates, most AD-specific PTMs, except for K311, appeared to decelerate the aggregation process. The impact of acetylation on RNA-induced LLPS was notably site-dependent, exhibiting both facilitative and inhibitory effects, whereas phosphorylation consistently reduced LLPS across all proteoforms examined. These insights underscore the complex interplay between site-specific PTMs and environmental factors in modulating Tau aggregation kinetics, enhancing our understanding of the molecular underpinnings of Tau pathology in AD and highlighting the critical role of PTMs located outside the ordered filament core in driving the self-assembly of Tau into PHF structures.

5.
Chem Sci ; 15(10): 3485-3494, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455018

RESUMO

High-valent iron alkyl complexes are rare, as they are prone to Fe-C bond homolysis. Here, we describe an unusual way to access formally iron(iv) alkyl complexes through double silylation of iron(i) alkyl dinitrogen complexes to form an NNSi2 group. Spectroscopically validated computations show that the disilylehydrazido(2-) ligand stabilizes the formal iron(iv) oxidation state through a strongly covalent Fe-N π-interaction, in which one π-bond fits an "inverted field" description. This means that the two bonding electrons are localized more on the metal than the ligand, and thus an iron(ii) resonance structure is a significant contributor, similar to the previously-reported phenyl analogue. However, in contrast to the phenyl complex which has an S = 1 ground state, the ground state of the alkyl complex is S = 2, which places one electron in the π* orbital, leading to longer and weaker Fe-N bonds. The reactivity of these hydrazido(2-) complexes is dependent on the steric and electronic properties of the specific alkyl group. When the alkyl group is the bulky trimethylsilylmethyl, the formally iron(iv) species is stable at room temperature and no migration of the alkyl ligand is observed. However, the analogous complex with the smaller methyl ligand does indeed undergo migration of the carbon-based ligand to the NNSi2 group to form a new N-C bond. This migration is followed by isomerization of the hydrazido ligand, and the product exists as two isomers that have distinct η1 and η2 binding of the hydrazido group. Lastly, when the alkyl group is benzyl, the Fe-C bond homolyzes to give a three-coordinate hydrazido(2-) complex which is likely due to the greater stability of a benzyl radical compared to that for methyl or trimethylsilylmethyl. These studies demonstrate the availability of a hydrocarbyl migration pathway at formally iron(iv) centers to form new N-C bonds directly to N2, though product selectivity is highly dependent on the identity of the migrating group.

6.
Inorg Chem ; 63(10): 4511-4526, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38408452

RESUMO

The ß-diketiminate supporting group, [ArNCRCHCRNAr]-, stabilizes low coordination number complexes. Four such complexes, where R = tert-butyl, Ar = 2,6-diisopropylphenyl, are studied: (nacnactBu)ML, where M = FeII, CoII and L = Cl, CH3. These are denoted FeCl, FeCH3, CoCl, and CoCH3 and have been previously reported and structurally characterized. The two FeII complexes (S = 2) have also been previously characterized by Mössbauer spectroscopy, but only indirect assessment of the ligand-field splitting and zero-field splitting (zfs) parameters was available. Here, EPR spectroscopy is used, both conventional field-domain for the CoII complexes (with S = 3/2) and frequency-domain, far-infrared magnetic resonance spectroscopy (FIRMS) for all four complexes. The CoII complexes were also studied by magnetometry. These studies allow accurate determination of the zfs parameters. The two FeII complexes are similar with nearly axial zfs and large magnitude zfs given by D = -37 ± 1 cm-1 for both. The two CoII complexes likewise exhibit large and nearly axial zfs, but surprisingly, CoCl has positive D = +55 cm-1 while CoCH3 has negative D = -49 cm-1. Theoretical methods were used to probe the electronic structures of the four complexes, which explain the experimental spectra and the zfs parameters.

7.
J Am Chem Soc ; 146(6): 4013-4025, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38308743

RESUMO

Biological multielectron reactions often are performed by metalloenzymes with heterometallic sites, such as anaerobic carbon monoxide dehydrogenase (CODH), which has a nickel-iron-sulfide cubane with a possible three-coordinate nickel site. Here, we isolate the first synthetic iron-sulfur clusters having a nickel atom with only three donors, showing that this structural feature is feasible. These have a core with two tetrahedral irons, one octahedral tungsten, and a three-coordinate nickel connected by sulfide and thiolate bridges. Electron paramagnetic resonance (EPR), Mössbauer, and superconducting quantum interference device (SQUID) data are combined with density functional theory (DFT) computations to show how the electronic structure of the cluster arises from strong magnetic coupling between the Ni, Fe, and W sites. X-ray absorption spectroscopy, together with spectroscopically validated DFT analysis, suggests that the electronic structure can be described with a formal Ni1+ atom participating in a nonpolar Ni-W σ-bond. This metal-metal bond, which minimizes spin density at Ni1+, is conserved in two cluster oxidation states. Fe-W bonding is found in all clusters, in one case stabilizing a local non-Hund state at tungsten. Based on these results, we compare different M-M interactions and speculate that other heterometallic clusters, including metalloenzyme active sites, could likewise store redox equivalents and stabilize low-valent metal centers through metal-metal bonding.

8.
Chemistry ; 30(24): e202304072, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38376370

RESUMO

Biological N2 reduction occurs at sulfur-rich multiiron sites, and an interesting potential pathway is concerted double reduction/ protonation of bridging N2 through PCET. Here, we test the feasibility of using synthetic sulfur-supported diiron complexes to mimic this pathway. Oxidative proton transfer from µ-η1 : η1-diazene (HN=NH) is the microscopic reverse of the proposed N2 fixation pathway, revealing the energetics of the process. Previously, Sellmann assigned the purple metastable product from two-electron oxidation of [{Fe2+(PPr3)L1}2(µ-η1 : η1-N2H2)] (L1=tetradentate SSSS ligand) at -78 °C as [{Fe2+(PPr3)L1}2(µ-η1 : η1-N2)]2+, which would come from double PCET from diazene to sulfur atoms of the supporting ligands. Using resonance Raman, Mössbauer, NMR, and EPR spectroscopies in conjunction with DFT calculations, we show that the product is not an N2 complex. Instead, the data are most consistent with the spectroscopically observed species being the mononuclear iron(III) diazene complex [{Fe(PPr3)L1}(η2-N2H2)]+. Calculations indicate that the proposed double PCET has a barrier that is too high for proton transfer at the reaction temperature. Also, PCET from the bridging diazene is highly exergonic as a result of the high Fe3+/2+ redox potential, indicating that the reverse N2 protonation would be too endergonic to proceed. This system establishes the "ground rules" for designing reversible N2/N2H2 interconversion through PCET, such as tuning the redox potentials of the metal sites.

9.
J Am Chem Soc ; 146(4): 2685-2700, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38227206

RESUMO

Oxidative MHAT hydrofunctionalization of alkenes provides a mild cobalt-catalyzed route to forming C-N and C-O bonds. Here, we characterize relevant salen-supported cobalt complexes and their reactions with alkenes, silanes, oxidant, and solvent. These stoichiometric investigations are complemented by kinetic studies of the catalytic reaction and catalyst speciation. We describe the solution characterization of an elusive cobalt(III) fluoride complex, which surprisingly is not the species that reacts with silane under catalytic conditions; rather, a cobalt(III) aquo complex is more active. Accordingly, the addition of water (0.15 M) speeds the catalytic reaction, and kinetic studies show that water addition enables catalytic product formation in 2 h at -50 °C in acetone. Under these conditions, cobalt(III) resting states can be observed by UV-vis spectrophotometry, including a cobalt(III)-alkyl complex. It comes from a transient cobalt(III) hydride complex that is formed in the turnover-limiting step of the catalytic cycle. This hydride readily degrades but not to H2; it releases H+ through a bimetallic pathway that explains the [Co]2 dependence of the off-cycle reaction. In contrast, the rate of the catalytic reaction follows the power law kobs[Co]1[silane]1. Because of the different [Co] dependence of the catalytic reaction and the degradation reaction, lower catalyst loading improves the yield of the catalytic reaction by reducing the relative rate of unproductive silane/oxidant consumption. These studies illuminate mechanistic details of oxidative MHAT hydrofunctionalization of alkenes and lay the groundwork for understanding other catalytic reactions mediated by cobalt hydride and cobalt alkyl complexes.

10.
Inorg Chem ; 62(45): 18449-18464, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37902987

RESUMO

Diketiminate-supported iron complexes are capable of cleaving the strong triple bond of N2 to give a tetra-iron complex with two nitrides (Rodriguez et al., Science, 2011, 334, 780-783). The mechanism of this reaction has been difficult to determine, but a transient green species was observed during the reaction that corresponds to a potential intermediate. Here, we describe studies aiming to identify the characteristics of this intermediate, using a range of spectroscopic techniques, including Mössbauer spectroscopy, electronic absorption spectroscopy, Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and nuclear resonance vibrational spectroscopy (NRVS) complemented by density functional theory (DFT) calculations. We successfully elucidated the nature of the starting iron(II) species and the bis(nitride) species in THF solution, and in each case, THF breaks up the multiiron species. Various observations on the green intermediate species indicate that it has one N2 per two Fe atoms, has THF associated with it, and has NRVS features indicative of bridging N2. Computational models with a formally diiron(0)-N2 core are most consistent with the accumulated data, and on this basis, a mechanism for N2 splitting is suggested. This work shows the power of combining NRVS, Mössbauer, NMR, and vibrational spectroscopies with computations for revealing the nature of transient iron species during N2 cleavage.

11.
J Am Chem Soc ; 145(38): 20739-20744, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37703184

RESUMO

Carbon nitride materials can be hosts for transition metal sites, but Mössbauer studies on iron complexes in carbon nitrides have always shown a mixture of environments and oxidation states. Here we describe the synthesis and characterization of a crystalline carbon nitride with stoichiometric iron sites that all have the same environment. The material (formula C6N9H2Fe0.4Li1.2Cl, abbreviated PTI/FeCl2) is derived from reacting poly(triazine imide)·LiCl (PTI/LiCl) with a low-melting FeCl2/KCl flux, followed by anaerobic rinsing with methanol. X-ray diffraction, X-ray absorption and Mössbauer spectroscopies, and SQUID magnetometry indicate that there are tetrahedral high-spin iron(II) sites throughout the material, all having the same geometry. The material is active for electrocatalytic nitrate reduction to ammonia, with a production rate of ca. 0.1 mmol cm-2 h-1 and Faradaic efficiency of ca. 80% at -0.80 V vs RHE.

12.
Chemistry ; 29(63): e202301962, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37574453

RESUMO

The carbide ligand in the iron-molybdenum cofactor (FeMoco) in nitrogenase bridges iron atoms in different oxidation states, yet it is difficult to discern its ability to mediate magnetic exchange interactions due to the structural complexity of the cofactor. Here, we describe two mixed-valent diiron complexes with C-based ketenylidene bridging ligands, and compare the carbon bridges with the more familiar sulfur bridges. The ground state of the [Fe2 (µ-CCO)2 ]+ complex with two carbon bridges (4) is S= 1 / 2 ${{ 1/2 }}$ , and it is valence delocalized on the Mössbauer timescale with a small thermal barrier for electron hopping that stems from the low Fe-C force constant. In contrast, one-electron reduction of the [Fe2 (µ-CCO)] complex with one carbon bridge (2) affords a mixed-valence species with a high-spin ground state (S= 7 / 2 ${ 7/2 }$ ), and the Fe-Fe distance contracts by 1 Å. Spectroscopic, magnetic, and computational studies of the latter reveal an Fe-Fe bonding interaction that leads to complete valence delocalization. Analysis of near-IR intervalence charge transfer transitions in 5 indicates a very large double exchange constant (B) in the range of 780-965 cm-1 . These results show that carbon bridges are extremely effective at stabilizing valence delocalized ground states in mixed-valent iron dimers.

18.
Inorg Chem ; 62(24): 9335-9342, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37294074

RESUMO

Alkynyl complexes of low-coordinate transition metals offer a sterically open environment and interesting bonding opportunities. Here, we explore the capacity of iron(I) alkynyl complexes to bind N2 and isolate a N2 complex including its X-ray crystal structure. Silylation of the N2 complex gives an isolable, formally iron(IV) complex with a disilylhydrazido(2-) ligand, but natural bond orbital analysis indicates that an iron(II) formulation is preferable. The structure of this compound is similar to an earlier reported phenyl complex in which phenyl migration forms a new N-C bond, but the alkynyl group does not migrate. DFT calculations are used to test the possible reasons why the alkynyl is resistant to migration, and these show that the large Fe-C bond energy in the alkynyl complex is a factor that could contribute to the lack of migration.

19.
Faraday Discuss ; 243(0): 429-449, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37077158

RESUMO

Porphyrin complexes are well-known in O2 and CO2 reduction, but their application to N2 reduction is less developed. Here, we show that oxo and nitrido complexes of molybdenum supported by tetramesitylporphyrin (TMP) are effective precatalysts for catalytic N2 reduction to ammonia, verified by 15N2 labeling studies and other control experiments. Spectroscopic and electrochemical studies illuminate some relevant thermodynamic parameters, including the N-H bond dissociation free energy of (TMP)MoNH (43 ± 2 kcal mol-1). We place these results in the context of other work on homogeneous N2 reduction catalysis.

20.
Chem Sci ; 14(9): 2303-2312, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36873832

RESUMO

Hydride complexes are important in catalysis and in iron-sulfur enzymes like nitrogenase, but the impact of hydride mobility on local iron spin states has been underexplored. We describe studies of a dimeric diiron(ii) hydride complex using X-ray and neutron crystallography, Mössbauer spectroscopy, magnetism, DFT, and ab initio calculations, which give insight into the dynamics and the electronic structure brought about by the hydrides. The two iron sites in the dimer have differing square-planar (intermediate-spin) and tetrahedral (high-spin) iron geometries, which are distinguished only by the hydride positions. These are strongly coupled to give an S total = 3 ground state with substantial magnetic anisotropy, and the merits of both localized and delocalized spin models are discussed. The dynamic nature of the sites is dependent on crystal packing, as shown by changes during a phase transformation that occurs near 160 K. The change in dynamics of the hydride motion leads to insight into its influence on the electronic structure. The accumulated data indicate that the two sites can trade geometries by rotating the hydrides, at a rate that is rapid above the phase transition temperature but slow below it. This small movement of the hydrides causes large changes in the ligand field because they are strong-field ligands. This suggests that hydrides could be useful in catalysis not only due to their reactivity, but also due to their ability to rapidly modulate the local electronic structure and spin states at metal sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...