Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Microb Genom ; 9(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37294008

RESUMO

Dehalobacterium formicoaceticum is recognized for its ability to anaerobically ferment dichloromethane (DCM), and a catabolic model has recently been proposed. D. formicoaceticum is currently the only axenic representative of its class, the Dehalobacteriia, according to the Genome Taxonomy Database. However, substantial additional diversity has been revealed in this lineage through culture-independent exploration of anoxic habitats. Here we performed a comparative analysis of 10 members of the Dehalobacteriia, representing three orders, and infer that anaerobic DCM degradation appears to be a recently acquired trait only present in some members of the order Dehalobacteriales. Inferred traits common to the class include the use of amino acids as carbon and energy sources for growth, energy generation via a remarkable range of putative electron-bifurcating protein complexes and the presence of S-layers. The ability of D. formicoaceticum to grow on serine without DCM was experimentally confirmed and a high abundance of the electron-bifurcating protein complexes and S-layer proteins was noted when this organism was grown on DCM. We suggest that members of the Dehalobacteriia are low-abundance fermentative scavengers in anoxic habitats.


Assuntos
Carbono , Firmicutes , Fermentação , Anaerobiose
4.
Front Microbiol ; 13: 1035247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569084

RESUMO

Dichloromethane (DCM; CH2Cl2) is a widespread pollutant with anthropogenic and natural sources. Anaerobic DCM-dechlorinating bacteria use the Wood-Ljungdahl pathway, yet dechlorination reaction mechanisms remain unclear and the enzyme(s) responsible for carbon-chlorine bond cleavage have not been definitively identified. Of the three bacterial taxa known to carry out anaerobic dechlorination of DCM, 'Candidatus Formimonas warabiya' strain DCMF is the only organism that can also ferment non-chlorinated substrates, including quaternary amines (i.e., choline and glycine betaine) and methanol. Strain DCMF is present within enrichment culture DFE, which was derived from an organochlorine-contaminated aquifer. We utilized the metabolic versatility of strain DCMF to carry out comparative metaproteomics of cultures grown with DCM or glycine betaine. This revealed differential abundance of numerous proteins, including a methyltransferase gene cluster (the mec cassette) that was significantly more abundant during DCM degradation, as well as highly conserved amongst anaerobic DCM-degrading bacteria. This lends strong support to its involvement in DCM dechlorination. A putative glycine betaine methyltransferase was also discovered, adding to the limited knowledge about the fate of this widespread osmolyte in anoxic subsurface environments. Furthermore, the metagenome of enrichment culture DFE was assembled, resulting in five high quality and two low quality draft metagenome-assembled genomes. Metaproteogenomic analysis did not reveal any genes or proteins for utilization of DCM or glycine betaine in the cohabiting bacteria, supporting the previously held idea that they persist via necromass utilization.

5.
Sci Total Environ ; 841: 156704, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35718174

RESUMO

Southeast Asia is considered to have some of the highest levels of marine plastic pollution in the world. It is therefore vitally important to increase our understanding of the impacts and risks of plastic pollution to marine ecosystems and the essential services they provide to support the development of mitigation measures in the region. An interdisciplinary, international network of experts (Australia, Indonesia, Ireland, Malaysia, the Philippines, Singapore, Thailand, the United Kingdom, and Vietnam) set a research agenda for marine plastic pollution in the region, synthesizing current knowledge and highlighting areas for further research in Southeast Asia. Using an inductive method, 21 research questions emerged under five non-predefined key themes, grouping them according to which: (1) characterise marine plastic pollution in Southeast Asia; (2) explore its movement and fate across the region; (3) describe the biological and chemical modifications marine plastic pollution undergoes; (4) detail its environmental, social, and economic impacts; and, finally, (5) target regional policies and possible solutions. Questions relating to these research priority areas highlight the importance of better understanding the fate of marine plastic pollution, its degradation, and the impacts and risks it can generate across communities and different ecosystem services. Knowledge of these aspects will help support actions which currently suffer from transboundary problems, lack of responsibility, and inaction to tackle the issue from its point source in the region. Being profoundly affected by marine plastic pollution, Southeast Asian countries provide an opportunity to test the effectiveness of innovative and socially inclusive changes in marine plastic governance, as well as both high and low-tech solutions, which can offer insights and actionable models to the rest of the world.


Assuntos
Ecossistema , Plásticos , Sudeste Asiático , Monitoramento Ambiental , Poluição Ambiental , Filipinas , Resíduos/análise
6.
Mar Pollut Bull ; 179: 113690, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35504213

RESUMO

Polychlorinated dibenzo-p-dioxins and furans (PCDD/F) are some of the most environmentally recalcitrant and toxic compounds. They occur naturally and as by-products of anthropogenic activity. Sydney Harbour Estuary (Sydney, Australia), is heavily contaminated with PCDD/F. Analysis of sediment cores revealed that the contamination source area in Homebush Bay continues to have one of the highest levels of PCDD/F contamination in the world (5207 pg WHO-TEQ g-1) with >50% of the toxicity attributed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), the most toxic PCDD/F congener. Comparison of congener profiles at the contamination source area with surrounding bays and historical data provided evidence for the attenuation of 2,3,7,8-TCDD and other congeners at the source area. This finding was supported by the detection of di-, mono- and unchlorinated dibenzo-p-dioxin. Microbial community analysis of sediments by 16S rRNA amplicon sequencing revealed an abundance of lineages from the class Dehalococcoidia (up to 15% of the community), including the genus Dehalobium (up to 0.5%). Anaerobic seawater enrichment cultures using perchloroethene as more biologically available growth substrate enriched the Dehalobium population by more than six-fold. The enrichment culture then proved capable of reductively dechlorinating 2,3,7,8-TCDD to 2,3,7-TriCDD and octachlorodibenzo-p-dibenzodioxin (OCDD) to hepta and hexa congeners. This work is the first to show microbial reductive dehalogenation of 2,3,7,8-TCDD with a bacterium from outside the Dehalococcoides genus, and one of only a few that demonstrates PCDD/F dechlorination in a marine environment.


Assuntos
Benzofuranos , Dioxinas , Dibenzodioxinas Policloradas , Baías , Benzofuranos/análise , Dibenzofuranos Policlorados/análise , Dioxinas/análise , Estuários , Dibenzodioxinas Policloradas/análise , RNA Ribossômico 16S/genética
7.
Sci Total Environ ; 829: 154587, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35306084

RESUMO

The polyfluorinated alkyl substance 6:2 fluorotelomer sulfonate (6:2 FTS) has been detected in diverse environments impacted by aqueous film-forming foams used for firefighting. In this study, a bacterial strain (J3) using 6:2 FTS as a sulfur source was isolated from landfill leachate previously exposed to polyfluoroalkyl substances in New South Wales, Australia. Strain J3 shares 99.9% similarity with the 16S rRNA gene of Dietzia aurantiaca CCUG 35676T. Genome sequencing yielded a draft genome sequence of 37 contigs with a G + C content of 69.7%. A gene cluster related to organic sulfur utilisation and assimilation was identified, that included an alkanesulfonate monooxygenase component B (ssuD), an alkanesulfonate permease protein (ssuC), an ABC transporter (ssuB), and an alkanesulfonate-binding protein (ssuA). Proteomic analyses comparing strain J3 cultures using sulfate and 6:2 FTS as sulfur source indicated that the ssu gene cluster was involved in 6:2 FTS biodegradation. Upregulated proteins included the SsuD monooxygenase, the SsuB transporter, the ABC transporter permease (SsuC), an alkanesulfonate-binding protein (SsuA), and a nitrilotriacetate monooxygenase component B. 6:2 Fluorotelomer carboxylic acid (6:2 FTCA) and 6:2 fluorotelomer unsaturated acid (6:2 FTUA) were detected as early degradation products in cultures (after 72 h) while 5:3 fluorotelomer acid (5:3 FTCA), perfluorohexanoic acid (PFHxA) and perfluoropentanoic acid (PFPeA) were detected as later degradation products (after 168 h). This work provides biochemical and metabolic insights into 6:2 FTS biodegradation by the Actinobacterium D. aurantiaca J3, informing the fate of PFAS in the environment.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Transportadores de Cassetes de Ligação de ATP/metabolismo , Actinobacteria , Alcanossulfonatos/análise , Biotransformação , Fluorocarbonos/análise , Proteínas de Membrana Transportadoras/metabolismo , Oxigenases de Função Mista/metabolismo , Proteômica , RNA Ribossômico 16S/genética , Enxofre/metabolismo , Poluentes Químicos da Água/análise
8.
Sci Total Environ ; 772: 145512, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33571764

RESUMO

Humans are increasingly dependent on engineered landscapes to minimize negative health impacts of water consumption. Managed aquifer recharge (MAR) systems, such as river and lake bank filtration, surface spreading or direct injection into the aquifer have been used for decades for water treatment and storage. Microbial and sorptive processes in these systems are effective for the attenuation of many emerging contaminants including trace organic chemicals such as pharmaceuticals and personal care products. Recent studies showed a superior efficiency of trace organic chemical biotransformation by incumbent communities of microorganisms under oxic and carbon-limited (oligotrophic) conditions. This study sought to identify features of bacterial genomes that are predictive of trophic strategy in this water management context. Samples from a pilot scale managed aquifer recharge system with regions of high and low carbon concentration, were used to generate a culture collection from which oligotrophic and copiotrophic bacteria were categorized. Genomic markers linked to either trophic strategy were used to develop a Bayesian network model that can infer prevailing carbon conditions in MAR systems from metagenomic data.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Teorema de Bayes , Biodegradação Ambiental , Humanos , Compostos Orgânicos , Poluentes Químicos da Água/análise
9.
ISME J ; 15(6): 1709-1721, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33452483

RESUMO

Dichloromethane (DCM; CH2Cl2) is a toxic groundwater pollutant that also has a detrimental effect on atmospheric ozone levels. As a dense non-aqueous phase liquid, DCM migrates vertically through groundwater to low redox zones, yet information on anaerobic microbial DCM transformation remains scarce due to a lack of cultured organisms. We report here the characterisation of DCMF, the dominant organism in an anaerobic enrichment culture (DFE) capable of fermenting DCM to the environmentally benign product acetate. Stable carbon isotope experiments demonstrated that the organism assimilated carbon from DCM and bicarbonate via the Wood-Ljungdahl pathway. DCMF is the first anaerobic DCM-degrading population also shown to metabolise non-chlorinated substrates. It appears to be a methylotroph utilising the Wood-Ljungdahl pathway for metabolism of methyl groups from methanol, choline, and glycine betaine. The flux of these substrates from subsurface environments may either directly (DCM, methanol) or indirectly (choline, glycine betaine) affect the climate. Community profiling and cultivation of cohabiting taxa in culture DFE without DCMF suggest that DCMF is the sole organism in this culture responsible for substrate metabolism, while the cohabitants persist via necromass recycling. Genomic and physiological evidence support placement of DCMF in a novel genus within the Peptococcaceae family, 'Candidatus Formimonas warabiya'.


Assuntos
Cloreto de Metileno , Peptococcaceae , Biodegradação Ambiental , Carbono , Isótopos de Carbono/análise
10.
PeerJ ; 7: e7775, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31592187

RESUMO

Bacteria capable of dechlorinating the toxic environmental contaminant dichloromethane (DCM, CH2Cl2) are of great interest for potential bioremediation applications. A novel, strictly anaerobic, DCM-fermenting bacterium, "DCMF", was enriched from organochlorine-contaminated groundwater near Botany Bay, Australia. The enrichment culture was maintained in minimal, mineral salt medium amended with dichloromethane as the sole energy source. PacBio whole genome SMRTTM sequencing of DCMF allowed de novo, gap-free assembly despite the presence of cohabiting organisms in the culture. Illumina sequencing reads were utilised to correct minor indels. The single, circularised 6.44 Mb chromosome was annotated with the IMG pipeline and contains 5,773 predicted protein-coding genes. Based on 16S rRNA gene and predicted proteome phylogeny, the organism appears to be a novel member of the Peptococcaceae family. The DCMF genome is large in comparison to known DCM-fermenting bacteria. It includes an abundance of methyltransferases, which may provide clues to the basis of its DCM metabolism, as well as potential to metabolise additional methylated substrates such as quaternary amines. Full annotation has been provided in a custom genome browser and search tool, in addition to multiple sequence alignments and phylogenetic trees for every predicted protein, http://www.slimsuite.unsw.edu.au/research/dcmf/.

11.
Plant Cell Environ ; 42(4): 1287-1301, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30375663

RESUMO

The folding and assembly of Rubisco large and small subunits into L8 S8 holoenzyme in chloroplasts involves many auxiliary factors, including the chaperone BSD2. Here we identify apparent intermediary Rubisco-BSD2 assembly complexes in the model C3 plant tobacco. We show BSD2 and Rubisco content decrease in tandem with leaf age with approximately half of the BSD2 in young leaves (~70 nmol BSD2 protomer.m2 ) stably integrated in putative intermediary Rubisco complexes that account for <0.2% of the L8 S8 pool. RNAi-silencing BSD2 production in transplastomic tobacco producing bacterial L2 Rubisco had no effect on leaf photosynthesis, cell ultrastructure, or plant growth. Genetic crossing the same RNAi-bsd2 alleles into wild-type tobacco however impaired L8 S8 Rubisco production and plant growth, indicating the only critical function of BSD2 is in Rubisco biogenesis. Agrobacterium mediated transient expression of tobacco, Arabidopsis, or maize BSD2 reinstated Rubisco biogenesis in BSD2-silenced tobacco. Overexpressing BSD2 in tobacco chloroplasts however did not alter Rubisco content, activation status, leaf photosynthesis rate, or plant growth in the field or in the glasshouse at 20°C or 35°C. Our findings indicate BSD2 functions exclusively in Rubisco biogenesis, can efficiently facilitate heterologous plant Rubisco assembly, and is produced in amounts nonlimiting to tobacco growth.


Assuntos
Chaperonas Moleculares/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Chaperonas Moleculares/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Nicotiana/crescimento & desenvolvimento
12.
Environ Microbiol ; 18(9): 3092-105, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26970344

RESUMO

Dehalobacter sp. strain UNSWDHB can dechlorinate up to 4 mM trichloromethane at a rate of 0.1 mM per day to dichloromethane and 1,1,2-trichloroethane (1 mM, 0.1 mM per day) with the unprecedented product profile of 1,2-dichloroethane and vinyl chloride. 1,1,1-trichloroethane and 1,1-dichloroethane were slowly utilized by strain UNSWDHB and were not completely removed, with minimum threshold concentrations of 0.12 mM and 0.07 mM respectively under growth conditions. Enzyme kinetic experiments confirmed strong substrate affinity for trichloromethane and 1,1,2-trichloroethane (Km = 30 and 62 µM respectively) and poor substrate affinity for 1,1,1-trichloroethane and 1,1-dichloroethane (Km = 238 and 837 µM respectively). Comparison of enzyme kinetic and growth data with other trichloromethane respiring organisms (Dehalobacter sp. strain CF and Desulfitobacterium sp. strain PR) suggests an adaptation of strain UNSWDHB to trichloromethane. The trichloromethane RDase (TmrA) expressed by strain UNSWDHB was identified by BN-PAGE and functionally characterized. Amino acid comparison of homologous RDases from all three organisms revealed only six significant amino acid substitutions/deletions, which are likely to be crucial for substrate specificity. Furthermore, strain UNSWDHB was shown to grow without exogenous supply of cobalamin confirming genomic-based predictions of a fully functional cobalamin synthetic pathway.


Assuntos
Clorofórmio/metabolismo , Etano/metabolismo , Peptococcaceae/metabolismo , Dicloretos de Etileno/metabolismo , Halogenação , Cloreto de Metileno/metabolismo , Peptococcaceae/genética , Peptococcaceae/isolamento & purificação , Tricloroetanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...