Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 14: 63, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265664

RESUMO

Acute brain slice preparation is a powerful experimental model for investigating the characteristics of synaptic function in the brain. Although brain tissue is usually cut at ice-cold temperature (CT) to facilitate slicing and avoid neuronal damage, exposure to CT causes molecular and architectural changes of synapses. To address these issues, we investigated ultrastructural and electrophysiological features of synapses in mouse acute cerebellar slices prepared at ice-cold and physiological temperature (PT). In the slices prepared at CT, we found significant spine loss and reconstruction, synaptic vesicle rearrangement and decrease in synaptic proteins, all of which were not detected in slices prepared at PT. Consistent with these structural findings, slices prepared at PT showed higher release probability. Furthermore, preparation at PT allows electrophysiological recording immediately after slicing resulting in higher detectability of long-term depression (LTD) after motor learning compared with that at CT. These results indicate substantial advantages of the slice preparation at PT for investigating synaptic functions in different physiological conditions.

2.
J Histochem Cytochem ; 66(12): 903-921, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29969056

RESUMO

For ultrafast fixation of biological samples to avoid artifacts, high-pressure freezing (HPF) followed by freeze substitution (FS) is preferred over chemical fixation at room temperature. After HPF, samples are maintained at low temperature during dehydration and fixation, while avoiding damaging recrystallization. This is a notoriously slow process. McDonald and Webb demonstrated, in 2011, that sample agitation during FS dramatically reduces the necessary time. Then, in 2015, we (H.G. and S.R.) introduced an agitation module into the cryochamber of an automated FS unit and demonstrated that the preparation of algae could be shortened from days to a couple of hours. We argued that variability in the processing, reproducibility, and safety issues are better addressed using automated FS units. For dissemination, we started low-cost manufacturing of agitation modules for two of the most widely used FS units, the Automatic Freeze Substitution Systems, AFS(1) and AFS2, from Leica Microsystems, using three dimensional (3D)-printing of the major components. To test them, several labs independently used the modules on a wide variety of specimens that had previously been processed by manual agitation, or without agitation. We demonstrate that automated processing with sample agitation saves time, increases flexibility with respect to sample requirements and protocols, and produces data of at least as good quality as other approaches.


Assuntos
Substituição ao Congelamento/métodos , Microscopia Eletrônica de Transmissão/métodos , Animais , Arabidopsis/ultraestrutura , Caenorhabditis elegans/ultraestrutura , Cerebelo/ultraestrutura , Chlorella/ultraestrutura , Desenho de Equipamento , Substituição ao Congelamento/economia , Substituição ao Congelamento/instrumentação , Congelamento , Masculino , Camundongos Endogâmicos C57BL , Pressão , Impressão Tridimensional , Fatores de Tempo
3.
PeerJ ; 5: e3923, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093995

RESUMO

BACKGROUND: Biomineralization, e.g., in sea urchins or mollusks, includes the assembly of mesoscopic superstructures from inorganic crystalline components and biopolymers. The resulting mesocrystals inspire biophysicists and material scientists alike, because of their extraordinary physical properties. Current efforts to replicate mesocrystal synthesis in vitro require understanding the principles of their self-assembly in vivo. One question, not addressed so far, is whether intracellular crystals of proteins can assemble with biopolymers into functional mesocrystal-like structures. During our electron microscopy studies into Artemia franciscana (Crustacea: Branchiopoda), we found initial evidence of such proteinaceous mesostructures. RESULTS: EM preparations with high-pressure freezing and accelerated freeze substitution revealed an extraordinary intracellular source of mesostructured inclusions in both the cyto-and nucleoplasm of the epidermal lining of ovisacs of A. franciscana. Confocal reflection microscopy not only confirmed our finding; it also revealed reflective, light dispersing activity of these flake-like structures, their positioning and orientation with respect to the ovisac inside. Both the striation of alternating electron dense and electron-lucent components and the sharp edges of the flakes indicate self-assembly of material of yet unknown origin under supposed participation of crystallization. However, selected area electron diffraction could not verify the status of crystallization. Energy dispersive X-ray analysis measured a marked increase in nitrogen within the flake-like inclusion, and the almost complete absence of elements that are typically involved in inorganic crystallization. This rise in nitrogen could possibility be related to higher package density of proteins, achieved by mesostructure assembly. CONCLUSIONS: The ovisac lining of A. franciscana is endowed with numerous mesostructured inclusions that have not been previously reported. We hypothesize that their self-assembly was from proteinaceous polycrystalline units and carbohydrates. These mesostructured flakes displayed active optical properties, as an umbrella-like, reflective cover of the ovisac, which suggests a functional role in the reproduction of A. franciscana. In turn, studies into ovisac mesostructured inclusions could help to optimizing rearing Artemia as feed for fish farming. We propose Artemia ovisacs as an in vivo model system for studying mesostructure formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...