Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 34(5): e2983, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38840517

RESUMO

Understanding the factors influencing species range limits is increasingly crucial in anticipating migrations due to human-caused climate change. In the boreal biome, ongoing climate change and the associated increases in the rate, size, and severity of disturbances may alter the distributions of boreal tree species. Notably, Interior Alaska lacks native pine, a biogeographical anomaly that carries implications for ecosystem structure and function. The current range of lodgepole pine (Pinus contorta var. latifolia) in the adjacent Yukon Territory may expand into Interior Alaska, particularly with human assistance. Evaluating the potential for pine expansion in Alaska requires testing constraints on range limits such as dispersal limitations, environmental tolerance limits, and positive or negative biotic interactions. In this study, we used field experiments with pine seeds and transplanted seedlings, complemented by model simulations, to assess the abiotic and biotic factors influencing lodgepole pine seedling establishment and growth after fire in Interior Alaska. We found that pine could successfully recruit, survive, grow, and reproduce across our broadly distributed network of experimental sites. Our results show that both mammalian herbivory and competition from native tree species are unlikely to constrain pine growth and that environmental conditions commonly found in Interior Alaska fall well within the tolerance limits for pine. If dispersal constraints are released, lodgepole pine could have a geographically expansive range in Alaska, and once established, its growth is sufficient to support pine-dominated stands. Given the impacts of lodgepole pine on ecosystem processes such as increases in timber production, carbon sequestration, landscape flammability, and reduced forage quality, natural or human-assisted migration of this species is likely to substantially alter responses of Alaskan forest ecosystems to climate change.


Assuntos
Pinus , Pinus/fisiologia , Alaska , Mudança Climática , Modelos Biológicos , Plântula , Demografia , Animais , Ecossistema
2.
PLoS One ; 15(9): e0238004, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32877417

RESUMO

Fire severity affects both ecosystem N-loss and post-fire N-balance. Climate change is altering the fire regime of interior Alaska, although the effects on Siberian alder (Alnus viridis ssp. fruticosa) annual N-fixation input (kg N ha-1 yr-1) and ecosystem N-balance are largely unknown. We established 263 study plots across two burn scars within the Yukon-Tanana Uplands ecoregion of interior Alaska. Siberian alder N-input was quantified by post-fire age, fire severity, and stand type. We modeled the components of Siberian alder N-input using environmental variables and fire severity within and across burn scars and estimated post-fire N-balance using N-loss (volatilized N) and N-gain [biological N-fixation and atmospheric deposition]. Mean nodule-level N-fixation rate was 70% higher 11-years post-fire (12.88 ± 1.18 µmol N g-1 hr-1) than 40-years post-fire (7.58 ± 0.59 µmol N g-1 hr-1). Structural equation modeling indicated that fire severity had a negative effect on Siberian alder density, but a positive effect on live nodule biomass (g nodule m-2 plant-1). Post-fire Siberian alder N-input was highest in 11-year old moderately burned deciduous stands (11.53 ± 0.22 kg N ha-1 yr-1), and lowest in 11-year old stands that converted from black spruce to deciduous dominance after severe fire (0.06 ± 0.003 kg N ha-1 yr-1). Over a 138-year fire return interval, N-gains in converted black spruce stands are estimated to offset 15% of volatilized N, whereas N-gains in burned deciduous stands likely exceed volatilized N by an order of magnitude. High Siberian alder density and nodule biomass drives N-input in burned deciduous stands, while low N-fixer density (including Siberian alder) limits N-input in high severity black spruce stands not underlain by permafrost. A severe fire regime that converts black spruce stands to deciduous dominance without alder recruitment may induce progressive N-losses which alter boreal forest ecosystem patterns and processes.


Assuntos
Alnus/crescimento & desenvolvimento , Ecossistema , Incêndios , Fixação de Nitrogênio , Nitrogênio/análise , Nitrogênio/metabolismo , Árvores/crescimento & desenvolvimento , Alaska , Alnus/metabolismo , Taiga , Árvores/metabolismo
3.
PLoS One ; 15(7): e0235932, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32645087

RESUMO

We tested whether post-fire seedling establishment of common boreal tree and expanding shrub species at treeline and in Arctic tundra is facilitated by co-migration of boreal forest mycorrhizal fungi. Wildfires are anticipated to facilitate biome shifts at the forest-tundra ecotone by improving seedbed conditions for recruiting boreal species; at the same time fire alters the composition and availability of mycorrhizal fungi critical to seedling performance. To determine the role of root-associated fungi (RAF) in post-fire seedling recruitment and future biome shifts, we outplanted four dominant boreal tree and shrub species inoculated with one of three treatments at treeline and in tundra: burned boreal forest, unburned boreal forest, or a control treatment of sterilized inoculum. We compared survivorship, growth, and physiological performance of the seedlings in relation to mycorrhizal inoculum treatment and among host species, characterized the RAF communities based on ITS-rDNA sequencing of individual root tips sampled from surviving seedlings, and tested for correlations between RAF composition and the inoculation treatments, host species, and duration of the experiment. We explored correlations between RAF composition and seedling metrics. Both live and sterile autoclaved inoculation treatments had similar effects on seedling survivorship and growth for all species. RAF composition did not vary by treatment, suggesting that most colonization was due to local fungi. However, seedling traits and growth were correlated with RAF species composition, colonization, and the relative abundance of specific RAF taxa. Picea sp. performance in particular showed strong co-variation with RAF metrics. Our results suggest that mycorrhizal co-migration is not a primary limiting factor to boreal seedling recruitment because the experimental provision of inoculum did not affect seedling recruitment; yet, RAF did influence seedling performance, particularly resident RAF at treeline and in tundra, suggesting that mycorrhizal fungi are important to vegetation processes at the treeline-tundra ecotone.


Assuntos
Micorrizas/fisiologia , Árvores/microbiologia , Incêndios Florestais , Basidiomycota/fisiologia , Picea/crescimento & desenvolvimento , Picea/microbiologia , Raízes de Plantas/microbiologia , Populus/crescimento & desenvolvimento , Populus/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Especificidade da Espécie , Taiga , Árvores/crescimento & desenvolvimento , Tundra
4.
PeerJ ; 6: e5008, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002952

RESUMO

BACKGROUND: The post-harvest recovery and sustained productivity of Nothofagus pumilio forests in Tierra del Fuego may be affected by the abundance and composition of ectomycorrhizal fungi (EMF). Timber harvesting alters EMF community structure in many managed forests, but the impacts of harvesting can vary with the management strategy. The implementation of variable retention (VR) management can maintain, increase, or decrease the diversity of many species, but the effects of VR on EMF in the forests of southern Patagonia have not been studied, nor has the role of EMF in the regeneration process of these forests. METHODS: We evaluated the effects of VR management on the EMF community associated with N. pumilio seedlings. We quantified the abundance, composition, and diversity of EMF across aggregate (AR) and dispersed (DR) retention sites within VR managed areas, and compared them to primary forest (PF) unmanaged stands. EMF assemblage and taxonomic identities were determined by ITS-rDNA sequencing of individual root tips sampled from 280 seedlings across three landscape replicates. To better understand seedling performance, we tested the relationships between EMF colonization, EMF taxonomic composition, seedling biomass, and VR treatment. RESULTS: The majority of EMF taxa were Basidiomycota belonging to the families Cortinariaceae (n = 29), Inocybaceae (n = 16), and Thelephoraceae (n = 8), which was in agreement with other studies of EMF diversity in Nothofagus forests. EMF richness and colonization was reduced in DR compared to AR and PF. Furthermore, EMF community composition was similar between AR and PF, but differed from the composition in DR. EMF community composition was correlated with seedling biomass and soil moisture. The presence of Peziza depressa was associated with higher seedling biomass and greater soil moisture, while Inocybe fibrillosibrunnea and Cortinarius amoenus were associated with reduced seedling biomass and lower soil moisture. Seedling biomass was more strongly related to retention type than EMF colonization, richness, or composition. DISCUSSION: Our results demonstrate reduced EMF attributes and altered composition in VR treatments relative to PF stands, with stronger impacts in DR compared to AR. This suggests that VR has the potential to improve the conservation status of managed stands by supporting native EMF in AR. Our results also demonstrate the complex linkages between retention treatments, fungal community composition, and tree growth at individual and stand scales.

5.
Ecology ; 99(6): 1284-1295, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29569245

RESUMO

The boreal biome represents approximately one third of the world's forested area and plays an important role in global biogeochemical and energy cycles. Numerous studies in boreal Alaska have concluded that growth of black and white spruce is declining as a result of temperature-induced drought stress. The combined evidence of declining spruce growth and changes in the fire regime that favor establishment of deciduous tree species has led some investigators to suggest the region may be transitioning from dominance by spruce to dominance by deciduous forests and/or grasslands. Although spruce growth trends have been extensively investigated, few studies have evaluated long-term radial growth trends of the dominant deciduous species (Alaska paper birch and trembling aspen) and their sensitivity to moisture availability. We used a large and spatially extensive sample of tree cores from interior Alaska to compare long-term growth trends among contrasting tree species (white and black spruce vs. birch and aspen). All species showed a growth peak in the mid-1940s, although growth following the peak varied strongly across species. Following an initial decline from the peak, growth of white spruce showed little evidence of a trend, while black spruce and birch growth showed slight growth declines from ~1970 to present. Aspen growth was much more variable than the other species and showed a steep decline from ~1970 to present. Growth of birch, black and white spruce was sensitive to moisture availability throughout most of the tree-ring chronologies, as evidenced by negative correlations with air temperature and positive correlations with precipitation. However, a positive correlation between previous July precipitation and aspen growth disappeared in recent decades, corresponding with a rise in the population of the aspen leaf miner (Phyllocnistis populiella), an herbivorous moth, which may have driven growth to a level not seen since the early 20th century. Our results provide important historical context for recent growth and raise questions regarding competitive interactions among the dominant tree species and exchanges of carbon and energy in the warming climate of interior Alaska.


Assuntos
Picea , Traqueófitas , Alaska , Clima , Árvores
6.
Sci Rep ; 7(1): 15344, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127380

RESUMO

Boreal forests play critical roles in global carbon, water and energy cycles. Recent studies suggest drought is causing a decline in boreal spruce growth, leading to predictions of widespread mortality and a shift in dominant vegetation type in interior Alaska. We took advantage of a large set of tree cores collected from random locations across a vast area of interior Alaska to examine long-term trends in carbon isotope discrimination and growth of black and white spruce. Our results confirm that growth of both species is sensitive to moisture availability, yet show limited evidence of declining growth in recent decades. These findings contrast with many earlier tree-ring studies, but agree with dynamic global vegetation model projections. We hypothesize that rising atmospheric [CO2] and/or changes in biomass allocation may have compensated for increasing evaporative demand, leaving recent radial growth near the long-term mean. Our results highlight the need for more detailed studies of tree physiological and growth responses to changing climate and atmospheric [CO2] in the boreal forest.


Assuntos
Biomassa , Mudança Climática , Modelos Biológicos , Picea/crescimento & desenvolvimento , Taiga , Alaska
7.
Mol Ecol ; 26(14): 3826-3838, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28401610

RESUMO

Root-associated fungi, particularly ectomycorrhizal fungi (EMF), are critical symbionts of all boreal tree species. Although climatically driven increases in wildfire frequency and extent have been hypothesized to increase vegetation transitions from tundra to boreal forest, fire reduces mycorrhizal inoculum. Therefore, changes in mycobiont inoculum may potentially limit tree-seedling establishment beyond current treeline. We investigated whether ectomycorrhizal shrubs that resprout after fire support similar fungal taxa to those that associate with tree seedlings that establish naturally after fire. We then assessed whether mycobiont identity correlates with the biomass or nutrient status of these tree seedlings. The majority of fungal taxa observed on shrub and seedling root systems were EMF, with some dark septate endophytes and ericoid mycorrhizal taxa. Seedlings and adjacent shrubs associated with similar arrays of fungal taxa, and there were strong correlations between the structure of seedling and shrub fungal communities. These results show that resprouting postfire shrubs support fungal taxa compatible with tree seedlings that establish after wildfire. Shrub taxon, distance to the nearest shrub and fire severity influenced the similarity between seedling and shrub fungal communities. Fungal composition was correlated with both foliar C:N ratio and seedling biomass and was one of the strongest explanatory variables predicting seedling biomass. While correlative, these results suggest that mycobionts are important to nutrient acquisition and biomass accrual of naturally establishing tree seedlings at treeline and that mycobiont taxa shared by resprouting postfire vegetation may be a significant source of inoculum for tree-seedling establishment beyond current treeline.


Assuntos
Incêndios , Micorrizas , Plântula/microbiologia , Árvores/microbiologia , Alaska , Regiões Árticas , Biomassa , Raízes de Plantas/microbiologia , Plântula/crescimento & desenvolvimento , Simbiose
8.
Ecology ; 97(11): 2986-2997, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27870053

RESUMO

Long-term experiments provide a way to test presumed causes of successional or environmentally driven vegetation changes. Early-successional nitrogen (N)-fixing plants are widely thought to facilitate productivity and vegetation development on N-poor sites, thus accounting for observed vegetation patterns later in succession. We tested this facilitative impact on vegetation development in a 23-yr field experiment on an Interior Alaska (USA) floodplain. On three replicate early-successional silt bars, we planted late-successional white spruce (Picea glauca) seedlings in the presence and absence of planted seedlings of an early-successional N-fixing shrub, thinleaf alder (Alnus incana). Alder initially facilitated survivorship and growth of white spruce. Within six years, however, after canopy closure, alder negatively affected spruce survivorship and growth. Our three replicate sites followed different successional trajectories. One site was eliminated by erosion and supported no vegetation development during our study. The other two sites, which differed in site moisture, diverged in vegetation composition. Structural equation modeling (SEM) suggested that, in the drier of these two sites, alder inhibited spruce growth directly (presumably by competition) and indirectly through effects mediated by competition with other woody species. However, at the wetter site, alder had both positive and negative effects on spruce growth, with negative effects predominating. Snowshoe hares (Lepus americanus) in alder thickets further reduced height growth of spruce in the wetter site. We conclude that net effects of alder on white spruce, the late-successional dominant, were primarily inhibitory and indirect, with the mechanisms depending on initial site moisture. Our results highlight the importance of long-term research showing that small differences among initial replicate sites can cause divergence in successional trajectories, consistent with individualistic distributions of species and communities along environmental gradients. This divergence was detectable only decades later.


Assuntos
Alnus/fisiologia , Florestas , Alaska , Biodiversidade , Dinâmica Populacional , Rios , Plântula , Fatores de Tempo
9.
BMC Ecol ; 16: 25, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27169473

RESUMO

BACKGROUND: Vegetation change in high latitude tundra ecosystems is expected to accelerate due to increased wildfire activity. High-severity fires increase the availability of mineral soil seedbeds, which facilitates recruitment, yet fire also alters soil microbial composition, which could significantly impact seedling establishment. RESULTS: We investigated the effects of fire severity on soil biota and associated effects on plant performance for two plant species predicted to expand into Arctic tundra. We inoculated seedlings in a growth chamber experiment with soils collected from the largest tundra fire recorded in the Arctic and used molecular tools to characterize root-associated fungal communities. Seedling biomass was significantly related to the composition of fungal inoculum. Biomass decreased as fire severity increased and the proportion of pathogenic fungi increased. CONCLUSIONS: Our results suggest that effects of fire severity on soil biota reduces seedling performance and thus we hypothesize that in certain ecological contexts fire-severity effects on plant-fungal interactions may dampen the expected increases in tree and shrub establishment after tundra fire.


Assuntos
Fungos/fisiologia , Plantas/microbiologia , Árvores/microbiologia , Tundra , Regiões Árticas , Fenômenos Fisiológicos Vegetais , Árvores/fisiologia
10.
PLoS One ; 8(2): e56033, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23418503

RESUMO

Disturbance can both initiate and shape patterns of secondary succession by affecting processes of community assembly. Thus, understanding assembly rules is a key element of predicting ecological responses to changing disturbance regimes. We measured the composition and trait characteristics of plant communities early after widespread wildfires in Alaska to assess how variations in disturbance characteristics influenced the relative success of different plant regeneration strategies. We compared patterns of post-fire community composition and abundance of regeneration traits across a range of fire severities within a single pre-fire forest type- black spruce forests of Interior Alaska. Patterns of community composition, as captured by multivariate ordination with nonmetric multidimensional scaling, were primarily related to gradients in fire severity (biomass combustion and residual vegetation) and secondarily to gradients in soil pH and regional climate. This pattern was apparent in both the full dataset (n = 87 sites) and for a reduced subset of sites (n = 49) that minimized the correlation between site moisture and fire severity. Changes in community composition across the fire-severity gradient in Alaska were strongly correlated to variations in plant regeneration strategy and rooting depth. The tight coupling of fire severity with regeneration traits and vegetation composition after fire supports the hypothesis that disturbance characteristics influence patterns of community assembly by affecting the relative success of different regeneration strategies. This study further demonstrated that variations in disturbance characteristics can dominate over environmental constraints in determining early patterns of community assembly. By affecting the success of regeneration traits, changes in fire regime directly shape the outcomes of community assembly, and thus may override the effects of slower environmental change on boreal forest composition.


Assuntos
Árvores , Alaska , Biomassa , Ecossistema , Incêndios , Solo
11.
Nature ; 475(7357): 489-92, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21796209

RESUMO

Arctic tundra soils store large amounts of carbon (C) in organic soil layers hundreds to thousands of years old that insulate, and in some cases maintain, permafrost soils. Fire has been largely absent from most of this biome since the early Holocene epoch, but its frequency and extent are increasing, probably in response to climate warming. The effect of fires on the C balance of tundra landscapes, however, remains largely unknown. The Anaktuvuk River fire in 2007 burned 1,039 square kilometres of Alaska's Arctic slope, making it the largest fire on record for the tundra biome and doubling the cumulative area burned since 1950 (ref. 5). Here we report that tundra ecosystems lost 2,016 ± 435 g C m(-2) in the fire, an amount two orders of magnitude larger than annual net C exchange in undisturbed tundra. Sixty per cent of this C loss was from soil organic matter, and radiocarbon dating of residual soil layers revealed that the maximum age of soil C lost was 50 years. Scaled to the entire burned area, the fire released approximately 2.1 teragrams of C to the atmosphere, an amount similar in magnitude to the annual net C sink for the entire Arctic tundra biome averaged over the last quarter of the twentieth century. The magnitude of ecosystem C lost by fire, relative to both ecosystem and biome-scale fluxes, demonstrates that a climate-driven increase in tundra fire disturbance may represent a positive feedback, potentially offsetting Arctic greening and influencing the net C balance of the tundra biome.


Assuntos
Carbono/química , Ecossistema , Incêndios , Solo/química , Regiões Árticas , Rios
12.
Ambio ; 37(7-8): 577-87, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19205181

RESUMO

Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.


Assuntos
Biomassa , Ecossistema , Árvores , Conservação dos Recursos Naturais , Incêndios , América do Norte , Porto Rico , Análise de Regressão , Clima Tropical , Madeira
13.
Ambio ; 37(7-8): 588-97, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19205182

RESUMO

In this study, we set up a wood decomposition experiment to i) quantify the percent of mass remaining, decay constant and performance strength of aspen stakes (Populus tremuloides) in dry and moist boreal (Alaska and Minnesota, USA), temperate (Washington and Idaho, USA), and tropical (Puerto Rico) forest types, and ii) determine the effects of fragmentation on wood decomposition rates as related to fragment size, forest age (and/or structure) and climate at the macro- and meso-scales. Fragment sizes represented the landscape variability within a climatic region. Overall, the mean small fragments area ranged from 10-14 ha, medium-sized fragments 33 to 60 ha, and large fragments 100-240 ha. We found that: i) aspen stakes decayed fastest in the tropical sites, and the slowest in the temperate forest fragments, ii) the percent of mass remaining was significantly greater in dry than in moist forests in boreal and temperate fragments, while the opposite was true for the tropical forest fragments, iii) no effect of fragment size on the percent of mass remaining of aspen stakes in the boreal sites, temperate dry, and tropical moist forests, and iv) no significant differences of aspen wood decay between forest edges and interior forest in boreal, temperate and tropical fragments. We conclude that: i) moisture condition is an important control over wood decomposition over broad climate gradients; and that such relationship can be non linear, and ii) the presence of a particular group of organism (termites) can significantly alter the decay rates of wood more than what might be predicted based on climatic factors alone. Biotic controls on wood decay might be more important predictors of wood decay in tropical regions, while abiotic constraints seems to be important determinants of decay in cold forested fragments.


Assuntos
Biomassa , Ecossistema , Populus , Madeira , Conservação dos Recursos Naturais , Porto Rico , Árvores , Clima Tropical , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...