Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 13(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38526188

RESUMO

Adult humans respond to heart injury by forming a permanent scar, yet other vertebrates are capable of robust and complete cardiac regeneration. Despite progress towards characterizing the mechanisms of cardiac regeneration in fish and amphibians, the large evolutionary gulf between mammals and regenerating vertebrates complicates deciphering which cellular and molecular features truly enable regeneration. To better define these features, we compared cardiac injury responses in zebrafish and medaka, two fish species that share similar heart anatomy and common teleost ancestry but differ in regenerative capability. We used single-cell transcriptional profiling to create a time-resolved comparative cell atlas of injury responses in all major cardiac cell types across both species. With this approach, we identified several key features that distinguish cardiac injury response in the non-regenerating medaka heart. By comparing immune responses to injury, we found altered cell recruitment and a distinct pro-inflammatory gene program in medaka leukocytes, and an absence of the injury-induced interferon response seen in zebrafish. In addition, we found a lack of pro-regenerative signals, including nrg1 and retinoic acid, from medaka endothelial and epicardial cells. Finally, we identified alterations in the myocardial structure in medaka, where they lack primordial layer cardiomyocytes and fail to employ a cardioprotective gene program shared by regenerating vertebrates. Our findings reveal notable variation in injury response across nearly all major cardiac cell types in zebrafish and medaka, demonstrating how evolutionary divergence influences the hidden cellular features underpinning regenerative potential in these seemingly similar vertebrates.


Assuntos
Miocárdio , Peixe-Zebra , Animais , Humanos , Adulto , Peixe-Zebra/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Evolução Biológica , Mamíferos
2.
bioRxiv ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37732254

RESUMO

Vertebrate spermatogonial stem cells maintain sperm production over the lifetime of an animal but fertility declines with age. While morphological studies have greatly informed our understanding of typical spermatogenesis, the molecular and cellular mechanisms underlying spermatogenesis are not yet understood, particularly with respect to the onset of fertility. We used single-cell RNA sequencing to generate a developmental atlas of the zebrafish testis. Using 5 timepoints across the adult life of a zebrafish, we described cellular profiles in the testis during and after fertility. While all germ cell stages of spermatogenesis are detected in testes from fertile adult zebrafish, testes from older infertile males only contained spermatogonia and a reduced population of spermatocytes. These remaining germ cells are transcriptionally distinct from fertile spermatogonia. Immune cells including macrophages and lymphocytes drastically increase in abundance in infertile testes. Our developmental atlas reveals the cellular changes as the testis ages and defines a molecular roadmap for the regulation of male fertility.

3.
bioRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37461520

RESUMO

Adult humans respond to heart injury by forming a permanent scar, yet other vertebrates are capable of robust and complete cardiac regeneration. Despite progress towards characterizing the mechanisms of cardiac regeneration in fish and amphibians, the large evolutionary gulf between mammals and regenerating vertebrates complicates deciphering which cellular and molecular features truly enable regeneration. To better define these features, we compared cardiac injury responses in zebrafish and medaka, two fish species that share similar heart anatomy and common teleost ancestry but differ in regenerative capability. We used single-cell transcriptional profiling to create a time-resolved comparative cell atlas of injury responses in all major cardiac cell types across both species. With this approach, we identified several key features that distinguish cardiac injury response in the non-regenerating medaka heart. By comparing immune responses to injury, we found altered cell recruitment and a distinct pro-inflammatory gene program in medaka leukocytes, and an absence of the injury-induced interferon response seen in zebrafish. In addition, we found a lack of pro-regenerative signals, including nrg1 and retinoic acid, from medaka endothelial and epicardial cells. Finally, we identified alterations in the myocardial structure in medaka, where they lack embryonic-like primordial layer cardiomyocytes, and fail to employ a cardioprotective gene program shared by regenerating vertebrates. Our findings reveal notable variation in injury response across nearly all major cardiac cell types in zebrafish and medaka, demonstrating how evolutionary divergence influences the hidden cellular features underpinning regenerative potential in these seemingly similar vertebrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...