Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Euro Surveill ; 29(26)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38940003

RESUMO

BackgroundSince its emergence in December 2019, over 700 million people worldwide have been infected with SARS-CoV-2 up to May 2024. While early rollout of mRNA vaccines against COVID-19 has saved many lives, there was increasing immune escape of new virus variants. Longitudinal monitoring of population-wide SARS-CoV-2 antibody responses from regular sample collection irrespective of symptoms provides representative data on infection and seroconversion/seroreversion rates.AimTo examine adaptive and cellular immune responses of a German SARS-CoV-2 outbreak cohort through several waves of infection with different virus variants.MethodsUtilising a 31-month longitudinal seroepidemiological study (n = 1,446; mean age: 50 years, range: 2-103) initiated during the first SARS-CoV-2 superspreading event (February 2020) in Heinsberg, Germany, we analysed acute infection, seroconversion and virus neutralisation at five follow-up visits between October 2020 and November 2022; cellular and cross-protective immunity against SARS-CoV-2 Omicron variants were also examined.ResultsSARS-CoV-2 spike (S)-specific IgAs decreased shortly after infection, while IgGs remained stable. Both increased significantly after vaccination. We predict an 18-month half-life of S IgGs upon infection. Nucleocapsid (N)-specific responses declined over 12 months post-infection but increased (p < 0.0001) during Omicron. Frequencies of SARS-CoV-2-specific TNF-alpha+/IFN-gamma+ CD4+ T-cells declined over 12 months after infection (p < 0.01). SARS-CoV-2 S antibodies and neutralisation titres were highest in triple-vaccinated participants infected between April 2021 and November 2022 compared with infections between April 2020 and January 2021. Cross neutralisation against Omicron BQ.1.18 and XBB.1.5 was very low in all groups.ConclusionInfection and/or vaccination did not provide the population with cross-protection against Omicron variants.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Reinfecção , SARS-CoV-2 , Soroconversão , Humanos , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/epidemiologia , Estudos Longitudinais , Alemanha/epidemiologia , Anticorpos Antivirais/sangue , Pessoa de Meia-Idade , Adulto , Masculino , Anticorpos Neutralizantes/sangue , Feminino , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Idoso , Reinfecção/imunologia , Reinfecção/virologia , Reinfecção/prevenção & controle , Estudos Soroepidemiológicos , Adolescente , Adulto Jovem , Criança , Pré-Escolar , Idoso de 80 Anos ou mais , Vacinação
5.
Sci Rep ; 12(1): 1807, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110662

RESUMO

Non-syndromic cleft lip with/without cleft palate (nsCL/P) is a frequent congenital malformation with multifactorial etiology. While recent genome-wide association studies (GWAS) have identified several nsCL/P risk loci, the functional effects of the associated non-coding variants are largely unknown. Furthermore, additional risk loci remain undetected due to lack of power. As genetic variants might alter binding of transcription factors (TF), we here hypothesized that the integration of data from TF binding sites, expression analyses and nsCL/P GWAS might help to (i) identify functionally relevant variants at GWAS loci, and (ii) highlight novel risk variants that have been previously undetected. Analysing the craniofacial TF TFAP2A in human embryonic palatal mesenchyme (HEPM) cells, we identified 2845 TFAP2A ChIP-seq peaks, several of which were located near nsCL/P candidate genes (e.g. MSX1 and SPRY2). Comparison with independent data suggest that 802 of them might be specific to craniofacial development, and genes near these peaks are enriched in processes relevant to nsCL/P. Integration with nsCL/P GWAS data, however, did not show robust evidence for co-localization of common nsCL/P risk variants with TFAP2A ChIP-seq peaks. This data set represents a new resource for the analyses of craniofacial processes, and similar approaches with additional cell lines and TFs could be applied to generate further insights into nsCL/P etiology.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fator de Transcrição AP-2/genética , Alelos , Sítios de Ligação , Linhagem Celular , Sequenciamento de Cromatina por Imunoprecipitação , Fenda Labial/metabolismo , Fissura Palatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Ligação Proteica , RNA-Seq , Fator de Transcrição AP-2/metabolismo , Transcriptoma
6.
Nat Biotechnol ; 39(12): 1556-1562, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34188222

RESUMO

Frequent testing of large population groups combined with contact tracing and isolation measures will be crucial for containing Coronavirus Disease 2019 outbreaks. Here we present LAMP-Seq, a modified, highly scalable reverse transcription loop-mediated isothermal amplification (RT-LAMP) method. Unpurified biosamples are barcoded and amplified in a single heat step, and pooled products are analyzed en masse by sequencing. Using commercial reagents, LAMP-Seq has a limit of detection of ~2.2 molecules per µl at 95% confidence and near-perfect specificity for severe acute respiratory syndrome coronavirus 2 given its sequence readout. Clinical validation of an open-source protocol with 676 swab samples, 98 of which were deemed positive by standard RT-qPCR, demonstrated 100% sensitivity in individuals with cycle threshold values of up to 33 and a specificity of 99.7%, at a very low material cost. With a time-to-result of fewer than 24 h, low cost and little new infrastructure requirement, LAMP-Seq can be readily deployed for frequent testing as part of an integrated public health surveillance program.


Assuntos
Teste para COVID-19/métodos , COVID-19 , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , COVID-19/diagnóstico , Humanos
7.
Neurol Genet ; 5(3): e330, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31321300

RESUMO

OBJECTIVE: We aim to characterize the causality and molecular and functional underpinnings of HACE1 deficiency in a mouse model of a recessive neurodevelopmental syndrome called spastic paraplegia and psychomotor retardation with or without seizures (SPPRS). METHODS: By exome sequencing, we identified 2 novel homozygous truncating mutations in HACE1 in 3 patients from 2 families, p.Q209* and p.R332*. Furthermore, we performed detailed molecular and phenotypic analyses of Hace1 knock-out (KO) mice and SPPRS patient fibroblasts. RESULTS: We show that Hace1 KO mice display many clinical features of SPPRS including enlarged ventricles, hypoplastic corpus callosum, as well as locomotion and learning deficiencies. Mechanistically, loss of HACE1 results in altered levels and activity of the small guanosine triphosphate (GTP)ase, RAC1. In addition, HACE1 deficiency results in reduction in synaptic puncta number and long-term potentiation in the hippocampus. Similarly, in SPPRS patient-derived fibroblasts, carrying a disruptive HACE1 mutation resembling loss of HACE1 in KO mice, we observed marked upregulation of the total and active, GTP-bound, form of RAC1, along with an induction of RAC1-regulated downstream pathways. CONCLUSIONS: Our results provide a first animal model to dissect this complex human disease syndrome, establishing the first causal proof that a HACE1 deficiency results in decreased synapse number and structural and behavioral neuropathologic features that resemble SPPRS patients.

9.
Circulation ; 136(5): 476-489, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28487391

RESUMO

BACKGROUND: A chromosomal locus at 4q32.1 has been genome-wide significantly associated with coronary artery disease risk. The locus encompasses GUCY1A3, which encodes the α1 subunit of the soluble guanylyl cyclase (sGC), a key enzyme in the nitric oxide/cGMP signaling pathway. The mechanism linking common variants in this region with coronary risk is not known. METHODS: Gene expression and protein expression were analyzed with quantitative polymerase chain reaction and immunoblotting, respectively. Putative allele-specific transcription factors were identified with in silico analyses and validated via allele-specific quantification of antibody-precipitated chromatin fractions. Regulatory properties of the lead risk variant region were analyzed with reporter gene assays. To assess the effect of zinc finger E box-binding homeobox 1 transcription factor (ZEB1), siRNA-mediated knockdown and overexpression experiments were performed. Association of GUCY1A3 genotype and cellular phenotypes was analyzed with vascular smooth muscle cell migration assays and platelet aggregation analyses. RESULTS: Whole-blood GUCY1A3 mRNA levels were significantly lower in individuals homozygous for the lead (rs7692387) risk variant. Likewise, reporter gene assays demonstrated significantly lower GUCY1A3 promoter activity for constructs carrying this allele. In silico analyses located a DNase I hypersensitivity site to rs7692387 and predicted binding of the transcription factor ZEB1 rather to the nonrisk allele, which was confirmed experimentally. Knockdown of ZEB1 resulted in more profound reduction of nonrisk allele promoter activity and a significant reduction of endogenous GUCY1A3 expression. Ex vivo-studied platelets from homozygous nonrisk allele carriers displayed enhanced inhibition of ADP-induced platelet aggregation by the nitric oxide donor sodium nitroprusside and the phosphodiesterase 5 inhibitor sildenafil compared with homozygous risk allele carriers. Moreover, pharmacological stimulation of sGC led to reduced migration only in vascular smooth muscle cells homozygous for the nonrisk allele. In the Hybrid Mouse Diversity Panel, higher levels of GUCY1A3 expression correlated with less atherosclerosis in the aorta. CONCLUSIONS: Rs7692387 is located in an intronic site that modulates GUCY1A3 promoter activity. The transcription factor ZEB1 binds preferentially to the nonrisk allele, leading to an increase in GUCY1A3 expression, higher sGC levels, and higher sGC activity after stimulation. Finally, human and mouse data link augmented sGC expression to lower risk of atherosclerosis.


Assuntos
Doença da Artéria Coronariana/genética , Guanilil Ciclase Solúvel/genética , Alelos , Plaquetas/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Doença da Artéria Coronariana/patologia , GMP Cíclico/metabolismo , Loci Gênicos , Genótipo , Células HEK293 , Homozigoto , Humanos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Risco , Citrato de Sildenafila/farmacologia , Guanilil Ciclase Solúvel/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/antagonistas & inibidores , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
10.
Hum Mol Genet ; 26(15): 2975-2983, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28486698

RESUMO

Thanatos-associated protein domain containing, apoptosis-associated protein 1 (THAP1), the gene mutated in DYT6 dystonia, encodes a transcription factor. While the N-terminal THAP domain allows for specific DNA-binding, the functional relevance of the other regions is largely unknown. The C-terminus contains a 4-amino-acid-spanning host cell factor 1 (HCFC1)-binding domain (HBM) that mediates the interaction with HCFC1. Interestingly, three mutations affecting the HBM (p.N136S, p.N136K, p.Y137C) have been reported in dystonia patients. We investigated the consequences of these mutations on the interaction of THAP1 with HCFC1 and demonstrated that all three mutations abolished HCFC1-THAP1 complex formation. Notably, HCFC1 co-localization was found in >90% of the almost 3,500 chromatin regions loaded with THAP1 in publicly available genome-wide ChIP data. By siRNA-mediated depletion of HCFC1, we detected an increase of THAP1 expression, indicating a co-repressor activity of HCFC1 for THAP1. Quantitative ChIP on selected promoters revealed that none of the mutations significantly decreased the DNA-binding ability of THAP1 while HCFC1 binding was highly reduced. Our findings indicate a THAP1-mediated recruitment of HCFC1 to THAP1 target sites. Of note, dystonia-causing mutations within the HBM in THAP1 abolished this interaction. Thus, we demonstrate disrupted THAP1-HCFC1 complex formation as another mechanism of dystonia-causing mutations leading to transcriptional dysregulation.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação a DNA/genética , Distonia/genética , Fator C1 de Célula Hospedeira/genética , Proteínas Nucleares/genética , Motivos de Aminoácidos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/metabolismo , Distúrbios Distônicos/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Fator C1 de Célula Hospedeira/metabolismo , Fator Proteico 1 do Hospedeiro , Humanos , Mutação/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética
11.
Am J Med Genet A ; 173(5): 1400-1405, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28371070

RESUMO

Simpson-Golabi-Behmel syndrome (SGBS) is characterized by multiple congenital abnormalities, pre/postnatal overgrowth, distinctive craniofacial features intellectual disability (ID) of variable degree, and an increased risk for embryonal tumors. SGBS is X-linked recessive and caused by deletions, duplications, and point mutations in GPC3, encoding a membrane associated cell surface heparan sulfate proteoglycan named glypican 3. GPC3 plays essential roles in the regulation of cell growth signaling and cell division. Here, we report on a family with three affected cousins who show variable clinical signs of SGBS and ID. Initial microarray-CGH revealed a deletion of approximately 30-50 kb that includes at least one exon of GPC3. By subsequent Sanger sequencing of genomic DNA we could map the chromosomal break points to define a deletion size of 43,617 bp including exons 5 and 6 of the GPC3 gene. RT-PCR analysis on RNA derived from whole blood could further confirm the deletion of both exons on transcript level. This loss of two exons results in a frameshift and a premature stop of translation. Based on our results we have established a breakpoint spanning PCR that could identify the mutation in the mothers and grandmother of the patients. Thus, we provided a molecular test that allows accurate genetic counselling and prenatal diagnosis for this family.


Assuntos
Anormalidades Múltiplas/genética , Arritmias Cardíacas/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Gigantismo/genética , Glipicanas/genética , Cardiopatias Congênitas/genética , Deficiência Intelectual/genética , Anormalidades Múltiplas/fisiopatologia , Arritmias Cardíacas/fisiopatologia , Criança , Pré-Escolar , Quebra Cromossômica , Éxons/genética , Feminino , Mutação da Fase de Leitura , Genes Ligados ao Cromossomo X , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Gigantismo/fisiopatologia , Cardiopatias Congênitas/fisiopatologia , Humanos , Lactente , Deficiência Intelectual/fisiopatologia , Masculino , Linhagem , Fenótipo , Deleção de Sequência
12.
J Mol Neurosci ; 62(1): 11-16, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28299530

RESUMO

Mutations in the THAP1 gene encoding the transcription factor THAP1 have been shown to cause DYT6 dystonia. THAP1 contains a highly conserved THAP zinc finger at its N-terminal region which allows specific binding to its target sequences as well as a coiled-coil domain (amino acids 139-190) towards its C-terminus postulated as a protein-protein-binding motif. While several DYT6-causing mutations within the THAP domain were shown to decrease THAP1 activity in transcriptional regulation and DNA-binding, the role of mutations within the coiled-coil domain is rather unknown. Therefore, assigning a function to this domain may enable functional testing of mutations in this region. Notably, THAP1 and other THAP proteins form homodimers; however, the responsible domain has not been elucidated in detail. We show that the region of amino acids 139-185 is involved in formation of THAP1 homodimers by using yeast-two-hybrid, GST pull-down, and cross-linking assays. Surprisingly, all nine reported DYT6-causing missense mutations within this region had no effect on dimerization of THAP1 in GST pull-down and formaldehyde cross-linking assays. In conclusion, we demonstrated that a region of 47 amino acids is involved in THAP1 homodimerization but mutations in this region seem not to impair this mechanism.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação a DNA/metabolismo , Distonia/genética , Mutação , Proteínas Nucleares/metabolismo , Multimerização Proteica , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Domínios Proteicos
13.
J Med Genet ; 52(12): 797-803, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26424145

RESUMO

BACKGROUND: The genetic aetiology of neurodevelopmental defects is extremely diverse, and the lack of distinctive phenotypic features means that genetic criteria are often required for accurate diagnostic classification. We aimed to identify the causative genetic lesions in two families in which eight affected individuals displayed variable learning disability, spasticity and abnormal gait. METHODS: Autosomal recessive inheritance was suggested by consanguinity in one family and by sibling recurrences with normal parents in the second. Autozygosity mapping and exome sequencing, respectively, were used to identify the causative gene. RESULTS: In both families, biallelic loss-of-function mutations in HACE1 were identified. HACE1 is an E3 ubiquitin ligase that regulates the activity of cellular GTPases, including Rac1 and members of the Rab family. In the consanguineous family, a homozygous mutation p.R219* predicted a truncated protein entirely lacking its catalytic domain. In the other family, compound heterozygosity for nonsense mutation p.R748* and a 20-nt insertion interrupting the catalytic homologous to the E6-AP carboxyl terminus (HECT) domain was present; western blot analysis of patient cells revealed an absence of detectable HACE1 protein. CONCLUSION: HACE1 mutations underlie a new autosomal recessive neurodevelopmental disorder. Previous studies have implicated HACE1 as a tumour suppressor gene; however, since cancer predisposition was not observed either in homozygous or heterozygous mutation carriers, this concept may require re-evaluation.


Assuntos
Transtornos do Neurodesenvolvimento/genética , Ubiquitina-Proteína Ligases/deficiência , Células Cultivadas , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Genes Recessivos , Humanos , Lactente , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único , Síndrome , Ubiquitina-Proteína Ligases/genética
14.
Biochim Biophys Acta ; 1839(11): 1196-204, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25088175

RESUMO

THAP1 encodes a transcription factor but its regulation is largely elusive. TOR1A was shown to be repressed by THAP1 in vitro. Notably, mutations in both of these genes lead to dystonia (DYT6 or DYT1). Surprisingly, expressional changes of TOR1A in THAP1 mutation carriers have not been detected indicating additional levels of regulation. Here, we investigated whether THAP1 is able to autoregulate its own expression. Using in-silico prediction, luciferase reporter gene assays, and (quantitative) chromatin immunoprecipitation (ChIP), we defined the THAP1 minimal promoter to a 480bp-fragment and demonstrated specific binding of THAP1 to this region which resulted in repression of the THAP1 promoter. This autoregulation was disturbed by different DYT6-causing mutations. Two mutants (Ser6Phe, Arg13His) were shown to be less stable than wildtype THAP1 adding to the effect of reduced binding to the THAP1 promoter. Overexpressed THAP1 is preferably degraded through the proteasome. Notably, endogenous THAP1 expression was significantly reduced in cells overexpressing wildtype THAP1 as demonstrated by quantitative PCR. In contrast, higher THAP1 levels were detected in induced pluripotent stem cell (iPS)-derived neurons from THAP1 mutation carriers. Thus, we identified a feedback-loop in the regulation of THAP1 expression and demonstrated that mutant THAP1 leads to higher THAP1 expression levels. This compensatory autoregulation may contribute to the mean age at onset in the late teen years or even reduced penetrance in some THAP1 mutation carriers.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ligação a DNA/fisiologia , Distonia/genética , Retroalimentação Fisiológica , Homeostase/genética , Proteínas Nucleares/fisiologia , Proteínas Reguladoras de Apoptose/genética , Sequência de Bases , Células Cultivadas , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética
15.
Eur J Med Genet ; 57(5): 207-11, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24486772

RESUMO

Spinocerebellar ataxia type 6 (SCA6), episodic ataxia type 2 (EA2) and familial hemiplegic migraine type 1 (FHM1) are allelic disorders of the gene CACNA1A encoding the P/Q subunit of a voltage gated calcium channel. While SCA6 is related to repeat expansions affecting the C-terminal part of the protein, EA2 and FHM phenotypes are usually associated with nonsense and missense mutations leading to impaired channel properties. In three unrelated families with dominant cerebellar ataxia, symptoms cosegregated with CACNA1A missense mutations of evolutionary highly conserved amino acids (exchanges p.E668K, p.R583Q and p.D302N). To evaluate pathogenic effects, in silico, protein modeling analyses were performed which indicate structural alterations of the novel mutation p.E668K within the homologous domain 2 affecting CACNA1A protein function. The phenotype is characterised by a very slowly progressive ataxia, while ataxic episodes or migraine are uncommon. These findings enlarge the phenotypic spectrum of CACNA1A mutations.


Assuntos
Canais de Cálcio/genética , Mutação de Sentido Incorreto , Ataxias Espinocerebelares/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Cerebelo/anormalidades , Cerebelo/patologia , Análise Mutacional de DNA , Progressão da Doença , Feminino , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Estrutura Terciária de Proteína , Ataxias Espinocerebelares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...