Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 103(4): 3275-3288, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32008787

RESUMO

A comprehensive, yet in depth, assessment is needed of the environmental impacts of dairy farms at regional and national scales to better track improvements made by the industry. With Pennsylvania as an example, a method using process-level simulation and cradle-to-farm gate life cycle assessment was developed and used to assess important environmental footprints of dairy farms within a state. Representative dairy farms of various sizes and management practices throughout 7 regions of the state were simulated with the Integrated Farm System Model. Environmental footprints varied widely among farms, with this variation influenced primarily by soil characteristics and climate and secondarily by farm management. Therefore, prescriptive mitigation strategies for individual farms are more effective than uniform enforcement of specific strategies across the state. Footprints for the whole state were determined by totaling values among farms and regions based on the amounts of milk produced by each. Pennsylvania dairy farms were determined to emit 4,555 with an uncertainty of ±415 Gg of CO2 equivalent of greenhouse gas with an intensity of 0.99 ± 0.09 kg of CO2 equivalent/kg of fat- and protein-corrected milk (FPCM) produced. Fossil energy consumption was 12,324 ± 1,946 TJ or 2.69 ± 0.42 MJ/kg of FPCM. Blue (nonprecipitation) water consumption was 64.1 ± 13.5 Tg with an intensity of 14.0 ± 3.0 kg/kg of FPCM. A total of all forms of reactive N loss was 43.2 ± 5.0 Gg with an intensity of 9.4 ± 1.1 g/kg of FPCM. These metrics were equivalent to 1.6% of the greenhouse gas emissions, 0.4% of fossil energy use, and 0.8% of fresh water consumption reported for the state. Thus, greenhouse gas emissions, fossil energy use, and blue water use associated with dairy farm production are relatively small compared with total estimates for the state. Perhaps the greatest environmental concern is that of ammonia emission, where dairy farms accounted for about half the estimated emissions of the state. This method can be applied to assessments of the dairy industry at larger regional and national scales.


Assuntos
Indústria de Laticínios , Monitoramento Ambiental , Fazendas , Animais , Bovinos , Indústria de Laticínios/métodos , Gases de Efeito Estufa , Leite , Pennsylvania
2.
PLoS One ; 14(3): e0214665, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30921450

RESUMO

Cost-effective heat mitigation strategies are imperative for maintaining milk production and dairy farm profitability in the U.S. with projected climate change. This study investigated the cost-effectiveness of four heat abatement strategies, including Minimal (open barn or shading), Moderate (forced ventilation), High (fans and misting), and Intense (air conditioning). Heat stress and subsequent impacts on milk production per cow were predicted across nine climatic regions in the U.S. for early (2015 to 2034), mid (2045 to 2064) and late (2081 to 2100) 21st century, using downscaled climate projections. Heat abatements were used to adjust predicted milk production losses and illustrate the potential to reduce milk production losses due to heat stress. Economic analysis included a cost-benefit ratio calculation associated with the implementation of each heat abatement. Results showed that milk production losses were expected to accelerate across the U.S. at a mean rate of 174±7 kg/cow/decade, with the fastest rate in the Southeast region. Relative to Minimal heat abatement, Moderate, High, and Intense heat abatements increased annual milk production per cow by 3%, 4%, and 6% during early-21st century, 3%, 6%, and 11% during mid-21st century, and 3%, 8%, and 21% during late-21st century, respectively. The cost effectiveness of different heat abatement strategies generally increased with subsequently stronger heat abatements. In mid- and late-21st century, mean annual net values of High and Intense heat stress abatement implementation approached -$30 to $190 /cow and -$20 to $590 /cow, respectively, with the largest net annual benefit in late-21st century under Intense abatement. Findings from the study demonstrate the value of using downscaled climate projections to shed light on local and regional strategies to abate heat stress on cattle and mitigate potential milk production losses due to climate change.


Assuntos
Bovinos/metabolismo , Indústria de Laticínios/estatística & dados numéricos , Resposta ao Choque Térmico , Leite/metabolismo , Animais , Bovinos/fisiologia , Mudança Climática , Análise Custo-Benefício , Indústria de Laticínios/economia , Umidade , Temperatura , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...