Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912607

RESUMO

Test protocols for airborne clearance of asbestos abatement sites define the collection, imaging and quantification of asbestos with transmission electron microscopy (TEM). Since those protocols were developed 35 years ago, scanning electron microscope (SEM) capabilities have significantly improved and expanded, with improvements in image spatial resolution, elemental analysis, and transmission electron diffraction capabilities. This contribution demonstrates transmission electron imaging and diffraction using NIST Asbestos Standard Reference Materials and a conventional SEM to provide comparable identification and quantification capabilities in the SEM as the current regulatory methods based on TEM techniques. In particular, we demonstrate that the 0.53 nm layer line spacing that is characteristic of asbestos can be quantified using different detection methods, and that other identifying diffraction signatures of chrysotile are readily obtained. The results demonstrate a viable alternative to the current TEM-based methods for asbestos identification and classification.

2.
ACS Nano ; 17(13): 12693-12705, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37368981

RESUMO

MAX phases with the general formula Mn+1AXn are layered carbides, nitrides, and carbonitrides with varying stacking sequence of layers of M6X octahedra and the A element depending on n. While "211" MAXphases (n = 1) are very common, MAX phases with higher n, especially n ≥ 3, have hardly been prepared. This work addresses open questions regarding the synthesis conditions, structure, and chemical composition of the "514" MAX phase. In contrast to literature reports, no oxide is needed to form the MAX phase, yet multiple heating steps at 1,600 °C are required. Using high-resolution X-ray diffraction, the structure of (Mo1-xVx)5AlC4 is thoroughly investigated, and Rietveld refinement suggests P-6c2 as the most fitting space group. SEM/EDS and XPS show that the chemical composition of the MAX phase is (Mo0.75V0.25)5AlC4. It was also exfoliated into its MXene sibling (Mo0.75V0.25)5C4 using two different techniques (using HF and an HF/HCl mixture) that lead to different surface terminations as shown by XPS/HAXPES measurements. Initial investigations of the electrocatalytic properties of both MXene versions show that, depending on the etchant, (Mo0.75V0.25)5C4 can reduce hydrogen at 10 mA cm-2 with an overpotential of 166 mV (HF only) or 425 mV (HF/HCl) after cycling the samples, which makes them a potential candidate as an HER catalyst.

3.
Opt Express ; 29(2): 1788-1804, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726385

RESUMO

A reconstruction algorithm for partially coherent x-ray computed tomography (XCT) including Fresnel diffraction is developed and applied to an optical fiber. The algorithm is applicable to a high-resolution tube-based laboratory-scale x-ray tomography instrument. The computing time is only a few times longer than the projective counterpart. The algorithm is used to reconstruct, with projections and diffraction, a tilt series acquired at the micrometer scale of a graded-index optical fiber using maximum likelihood and a Bayesian method based on the work of Bouman and Sauer. The inclusion of Fresnel diffraction removes some reconstruction artifacts and use of a Bayesian prior probability distribution removes others, resulting in a substantially more accurate reconstruction.

4.
Ultramicroscopy ; 219: 113137, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33096294

RESUMO

A scanning diffraction technique is implemented in the scanning electron microscope. The technique, referred to as 4D STEM-in-SEM (four-dimensional scanning transmission electron microscopy in the scanning electron microscope), collects a diffraction pattern from each point on a sample which is saved to disk for further analysis. The diffraction patterns are collected using an on-axis lens-coupled phosphor/CCD arrangement. Synchronization between the electron beam and the camera exposure is accomplished with off-the-shelf data acquisition hardware. Graphene is used as a model system to test the sensitivity of the instrumentation and develop some basic analysis techniques. The data show interpretable diffraction patterns from monolayer graphene with integration times as short as 0.5 ms with a beam current of 245 pA (7.65×105 incident electrons per pixel). Diffraction patterns are collected at a rate of ca. 100/s from the mm to nm length scales. Using a grain boundary as a 'knife-edge', the spatial resolution of the technique is demonstrated to be ≤5.6nm (edge-width 25 % to 75 %). Analysis of the orientation of the diffraction patterns yields an angular (orientation) precision of ≤0.19∘ (full width at half maximum) for unsupported monolayer graphene. In addition, it is demonstrated that the 4D datasets have the information content necessary to analyze complex and heterogeneous multilayer graphene films.

5.
Ultramicroscopy ; 212: 112972, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32151796

RESUMO

This contribution demonstrates experimentally how a series of annular dark-field transmission images collected in a scanning electron microscope (SEM) with a basic solid-state detector can be used to quantify electron scattering distributions (i.e., diffraction patterns). The technique is demonstrated at different primary electron energies with a polycrystalline aluminum sample and two amorphous samples comprising vastly different mass-thicknesses. Contrast reversal is demonstrated in both amorphous samples, suggesting that intuitive image contrast interpretation is not always straightforward even for ultrathin, low atomic number samples. We briefly address how the scattering distributions obtained here can be used as an aid to interpret contrast in annular dark-field images, and how to set up imaging conditions to obtain intuitively interpretable contrast from samples with regions of significantly different thickness.

6.
R Soc Open Sci ; 6(8): 190437, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31598243

RESUMO

Growing concerns regarding the safety, flammability and hazards posed by Li-ion systems have led to research on alternative rechargeable metal-ion electrochemical storage technologies. Among the most notable of these are Na-ion supercapacitors and batteries, motivated, in part, by the similar electrochemistry of Li and Na ions. However, sodium ion batteries (SIBs) come with their own set of issues, especially the large size of the Na+ ion, its relatively sluggish kinetics and low energy densities. This makes the development of novel materials and appropriate electrode architecture of absolute significance. Transition metal dichalcogenides (TMDs) have attracted a lot of attention in this regard due to their relative ease of exfoliation, diverse morphologies and architectures with superior electronic properties. Here, we study the electrochemical performance of Mo-based two-dimensional (2D) layered TMDs (e.g. MoS2, MoSe2 and MoTe2), exfoliated in a superacid, for battery and supercapacitor applications. The exfoliated TMD flakes were interfaced with reduced graphene oxide (rGO) to be used as composite electrodes. Electron microscopy, elemental mapping and Raman spectra were used to analyse the exfoliated material and confirm the formation of 2D TMD/rGO layer morphology. For supercapacitor applications in aqueous electrolyte, the sulfide-based TMD (MoS2) exhibited the best performance, providing an areal capacitance of 60.25 mF cm-2. For SIB applications, TMD electrodes exhibited significantly higher charge capacities than the neat rGO electrode. The initial desodiation capacities for the composite electrodes are 468.84 mAh g-1 (1687.82 C g-1), 399.10 mAh g-1 (1436.76 C g-1) and 387.36 mAh g-1 (1394.49 C g-1) for MoS2, MoSe2 and MoTe2, respectively. Also, the MoS2 and MoSe2 composite electrodes provided a coulombic efficiency of near 100 % after a few initial cycles.

7.
Ultramicroscopy ; 196: 40-48, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30278316

RESUMO

A new type of angularly selective electron detector for use in a scanning electron microscope is presented. The detector leverages a digital micromirror device (DMD) to take advantage of the benefits of two-dimensional (2D) imaging detectors and high-bandwidth integrating detectors in a single optical system. The imaging detector provides direct access to the diffraction pattern, while the integrating detector can be synchronized to the microscope scan generator providing access to a real space image generated by integrating (pixel-by-pixel) a portion of the diffraction pattern as quantitatively defined by the DMD. The DMD, in effect, takes the place of the objective aperture in a transmission electron microscope (TEM) or an annular detector in a scanning transmission electron microscope (STEM), but has the distinct advantage that it can be programmed to take any shape in real time. Proof-of-principle data collected with the detector show diffraction contrast in samples ranging from a polycrystalline gold film to monolayer graphene.

8.
Ultramicroscopy ; 195: 12-20, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30172856

RESUMO

A scanning electron microscope (SEM) equipped with a zero-dimensional solid-state transmission electron detector and a modular aperture system was used to examine the relationship between annular dark-field image intensity distributions and several imaging parameters. The effects of primary electron energy, transmission detector acceptance angle and span, and beam convergence angle on scattering intensity distributions exhibited by a 10 nm thick amorphous silicon nitride film were examined. Results showed that angular distributions varied significantly with only minor changes in transmission detector acceptance angle span. Distributions collected with narrow apertures and normalized to acceptance angle span exhibited broad, distinct peaks that shifted to greater angles with decreasing primary electron energy, while even modestly wide apertures resulted in large distribution variations. A comparison between scattering distributions (i.e., diffraction patterns) quantified using the modular aperture system and a two-dimensional pixelated detector demonstrated that equivalent information could be obtained with either detector for this sample.

9.
Micros Today ; 25(2): 12-19, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29375278

RESUMO

This contribution presents a simple, cost-effective modular aperture system enabling comprehensive acceptance angle control for STEM-in-SEM imaging. The system is briefly described, and different ways to use it are explained. To demonstrate the utility of the approach, a few samples are examined using the new system with comparisons to images from traditional SEM detectors. We show that the system enables conventional STEM imaging modes ranging from brightfield to high-angle annular darkfield (that is, Z-contrast), thin annular detection schemes, and even some non-conventional imaging modes.

10.
Ultramicroscopy ; 167: 43-56, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27179301

RESUMO

This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed.

11.
Langmuir ; 25(12): 7050-6, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19425604

RESUMO

Isotopic labeling techniques were employed to study alkene addition to hydrogen- and deuterium-terminated silicon nanoparticles. Deuterium-terminated silicon nanoparticle synthesis is described, as is the characterization of fresh deuterium-terminated particles by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and in situ Fourier transform infrared spectroscopy (FTIR). Particles were refluxed in pure 1-dodecene and subsequently characterized by FTIR and nuclear magnetic resonance (NMR) spectroscopy. (1)H NMR results showed features consistent with dodecyl-terminated nanoparticles. Infrared absorption spectra of refluxed particles showed strong evidence of new C-D bond formation, which is consistent with a radical chain mechanism for alkene addition by hydrosilylation.


Assuntos
Deutério/química , Ácido N-Acetilneuramínico/química , Nanopartículas , Silício/química , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Langmuir ; 23(22): 11217-24, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17910484

RESUMO

The earliest stages of thermal oxidation of 6 nm diameter silicon nanoparticles by molecular oxygen are examined using a tandem differential mobility analysis (TDMA) apparatus, Fourier-transform infrared (FTIR) spectroscopy, time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and X-ray photoelectron spectroscopy (XPS). Particles are synthesized in and then extracted from a nonthermal RF plasma operating at approximately 20 Torr into the atmospheric pressure TDMA apparatus. The TDMA apparatus was used to measure oxidation-induced size changes over a broad range of temperature settings and N2-O2 carrier gas composition. Surface chemistry changes are evaluated in situ with an FTIR spectrometer and a hybrid flow-through cell, and ex situ with ToF-SIMS and XPS. Particle size measurements show that, at temperatures less than approximately 500 degrees C, particles shrink regardless of the carrier gas oxygen concentration, while FTIR and ToF-SIMS spectra demonstrate a loss of hydrogen from the particles and minimal oxide formation. At higher temperatures, FTIR and XPS spectra indicate that an oxide forms which tends toward, but does not fully reach, stoichiometric SiO2 with increasing temperature. Between 500 and 800 degrees C, size measurements show a small increase in particle diameter with increasing carrier gas oxygen content and temperature. Above 800 degrees C, particle growth rapidly reaches a plateau while FTIR and XPS spectra change little. ToF-SIMS signals associated with O-Si species also show an increase in intensity at 800 degrees C.

13.
J Am Chem Soc ; 129(9): 2496-503, 2007 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-17284030

RESUMO

The surface chemistry of pristine, 6-nm silicon nanoparticles has been investigated. The particles were produced in an RF plasma and studied using a tandem differential mobility analysis apparatus, Fourier transform infrared spectroscopy (FTIR), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and transmission electron microscopy. Particles were extracted from the plasma, which operates at approximately 20 Torr, into an atmospheric pressure aerosol flow tube, and then through a variable-temperature furnace that could be adjusted between room temperature and 1200 degrees C. DMA measurements show that freshly generated silicon particles shrink with heating, with particle diameters decreasing by approximately 0.25 nm between 350 and 400 degrees C. FTIR results indicate that freshly generated particles are primarily covered with SiH2 groups and smaller amounts of SiH and SiH3. Spectra recorded as a function of heating temperature indicate that the amount of surface hydrogen, as measured by the intensity of modes associated with SiH, SiH2, and SiH3, decreases with heating. ToF-SIMS measurements also suggest that hydrogen desorbs from the particles surfaces over the same temperature range that the particles shrink.


Assuntos
Aerossóis/química , Hidrogênio/química , Silício/química , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Nanopartículas , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...