Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 37(9): 1792-1801, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37464068

RESUMO

Oncogenic fusion drivers are common in hematological cancers and are thus relevant targets of future CRISPR-Cas9-based treatment strategies. However, breakpoint-location variation in patients pose a challenge to traditional breakpoint-targeting CRISPR-Cas9-mediated disruption strategies. Here we present a new dual intron-targeting CRISPR-Cas9 treatment strategy, for targeting t(8;21) found in 5-10% of de novo acute myeloid leukemia (AML), which efficiently disrupts fusion genes without prior identification of breakpoint location. We show in vitro growth rate and proliferation reduction by 69 and 94% in AML t(8;21) Kasumi-1 cells, following dual intron-targeted disruption of RUNX1-RUNX1T1 compared to a non t(8;21) AML control. Furthermore, mice injected with RUNX1-RUNX1T1-disrupted Kasumi-1 cells had in vivo tumor growth reduction by 69 and 91% compared to controls. Demonstrating the feasibility of RUNX1-RUNX1T1 disruption, these findings were substantiated in isolated primary cells from a patient diagnosed with AML t(8;21). In conclusion, we demonstrate proof-of-principle of a dual intron-targeting CRISPR-Cas9 treatment strategy in AML t(8;21) without need for precise knowledge of the breakpoint location.


Assuntos
Leucemia Mieloide Aguda , Translocação Genética , Animais , Camundongos , Proteína 1 Parceira de Translocação de RUNX1/genética , Íntrons/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Carga Tumoral , Sistemas CRISPR-Cas , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Proliferação de Células , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
2.
Sensors (Basel) ; 22(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36298113

RESUMO

Restriction endonucleases are expressed in all bacteria investigated so far and play an essential role for the bacterial defense against viral infections. Besides their important biological role, restriction endonucleases are of great use for different biotechnological purposes and are indispensable for many cloning and sequencing procedures. Methods for specific detection of restriction endonuclease activities can therefore find broad use for many purposes. In the current study, we demonstrate proof-of-concept for a new principle for the detection of restriction endonuclease activities. The method is based on rolling circle amplification of circular DNA products that can only be formed upon restriction digestion of specially designed DNA substrates. By combining the activity of the target restriction endonuclease with the highly specific Cre recombinase to generate DNA circles, we demonstrate specific detection of selected restriction endonuclease activities even in crude cell extracts. This is, to our knowledge, the first example of a sensor system that allows activity measurements of restriction endonucleases in crude samples. The presented sensor system may prove valuable for future characterization of bacteria species or strains based on their expression of restriction endonucleases as well as for quantification of restriction endonuclease activities directly in extracts from recombinant cells.


Assuntos
DNA Circular , DNA , Extratos Celulares , DNA/química , Enzimas de Restrição do DNA/metabolismo , Endonucleases/química
3.
Cancers (Basel) ; 14(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35158920

RESUMO

At present, human papillomavirus (HPV) testing is replacing morphology-based cytology as the primary tool for cervical cancer screening in several countries. However, the HPV assays approved for screening lack detection for all but one of the possibly carcinogenic HPV types and do not genotype all included HPV types. This study demonstrates the use of a targeted HPV next generation sequencing (NGS) panel to detect and genotype all 25 carcinogenic, probably carcinogenic, and possibly carcinogenic HPV types as well as the low-risk types HPV6 and HPV11. The panel was validated using a cohort of 93 paired liquid-based cytology samples (general practitioner (GP)-collected cervical samples and cervico-vaginal self-samples (SS)). Overall, the targeted panel had a sensitivity (GP = 97.7%, SS = 92.1%) and specificity (GP = 98.0%, SS = 96.4%) similar to the commercial HPV assays, Cobas® 4800 HPV DNA test (Roche) and CLART® HPV4S assay (GENOMICA). Interestingly, of the samples that tested positive with the NGS panel, three (6.4%) of the GP-collected samples and four (9.1%) of the self-samples tested positive exclusively for HPV types only included in the NGS panel. Thus, targeted HPV sequencing has great potential to improve the HPV screening programs since, as shown here, it can identify additional HPV positive cases, cases with HPV integration, variants in the HPV genome, and which HPV type is dominant in multi-infected cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...