Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(1): 013202, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725573

RESUMO

We report on the design and characterization of a cold atom source for strontium (Sr) based on a two-dimensional magneto-optical trap (MOT) that is directly loaded from the atom jet of a dispenser. We characterize the atom flux of the source by measuring the loading rate of a three-dimensional MOT. We find loading rates of up to 108 atoms per second. The setup is compact, easy to construct, and has low power consumption. It addresses the longstanding challenge of reducing the complexity of cold beam sources for Sr, which is relevant for optical atomic clocks, quantum simulation, and computing devices based on ultracold Sr.

2.
Opt Express ; 28(8): 10928-10938, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403614

RESUMO

Coherence time is one of the fundamental characteristics of light sources. Methods based on autocorrelation have been widely applied from optical domain to soft X-rays to characterize the radiation coherence time. However, for the hard X-ray regime, due to the lack of proper mirrors, it is extremely difficult to implement such autocorrelation scheme. In this paper, a novel approach for characterizing the coherence time of a hard X-ray free-electron laser (FEL) is proposed and validated numerically. A phase shifter is adopted to control the correlation between X-ray and microbunched electrons. The coherence time of the FEL pulse can be extracted from the cross-correlation. Semi-analytical analysis and three-dimensional time-dependent numerical simulations are presented to elaborate the details. A coherence time of 218.2 attoseconds for 6.92 keV X-ray FEL pulses is obtained in our simulation based on the configuration of Linac Coherent Light Source. This approach provides critical temporal coherence diagnostics for X-ray FELs, and is decoupled from machine parameters, applicable for any photon energy, radiation brightness, repetition rate and FEL pulse duration.

3.
Sci Rep ; 10(1): 5961, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249769

RESUMO

One of the key challenges in scientific researches based on free-electron lasers (FELs) is the characterization of the coherence time of the ultra-fast hard x-ray pulse, which fundamentally influences the interaction process between x-rays and materials. Conventional optical methods, based on autocorrelation, are very difficult to realize due to the lack of mirrors. Here, we experimentally demonstrate a novel method which yields a coherence time of 174.7 attoseconds for the 6.92 keV FEL pulses at the Linac Coherent Light Source. In our experiment, a phase shifter is adopted to control the cross-correlation between x-ray and microbunched electrons. This approach provides critical diagnostics for the temporal coherence of x-ray FELs and is universal for general machine parameters; applicable for wide range of photon energy, radiation brightness, repetition rate and FEL pulse duration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...