Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 76(2): 319-28, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26554828

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive cancer that occurs more frequently in men, but is associated with longer survival in women. Insight into the survival advantage of female patients may advance the molecular understanding of MPM and identify therapeutic interventions that will improve the prognosis for all MPM patients. In this study, we performed whole-genome sequencing of tumor specimens from 10 MPM patients and matched control samples to identify potential driver mutations underlying MPM. We identified molecular differences associated with gender and histology. Specifically, single-nucleotide variants of BAP1 were observed in 21% of cases, with lower mutation rates observed in sarcomatoid MPM (P < 0.001). Chromosome 22q loss was more frequently associated with the epithelioid than that nonepitheliod histology (P = 0.037), whereas CDKN2A deletions occurred more frequently in nonepithelioid subtypes among men (P = 0.021) and were correlated with shorter overall survival for the entire cohort (P = 0.002) and for men (P = 0.012). Furthermore, women were more likely to harbor TP53 mutations (P = 0.004). Novel mutations were found in genes associated with the integrin-linked kinase pathway, including MYH9 and RHOA. Moreover, expression levels of BAP1, MYH9, and RHOA were significantly higher in nonepithelioid tumors, and were associated with significant reduction in survival of the entire cohort and across gender subgroups. Collectively, our findings indicate that diverse mechanisms highly related to gender and histology appear to drive MPM.


Assuntos
Neoplasias Pulmonares/genética , Mesotelioma/genética , Neoplasias Pleurais/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Mesotelioma/patologia , Mesotelioma Maligno , Pessoa de Meia-Idade , Neoplasias Pleurais/patologia , Fatores Sexuais , Adulto Jovem
2.
PLoS One ; 7(11): e49538, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166702

RESUMO

The identification of nucleotide sequence variations in viral pathogens linked to disease and clinical outcomes is important for developing vaccines and therapies. However, identifying these genetic variations in rapidly evolving pathogens adapting to selection pressures unique to each host presents several challenges. Machine learning tools provide new opportunities to address these challenges. In HIV infection, virus replicating within the brain causes HIV-associated dementia (HAD) and milder forms of neurocognitive impairment in 20-30% of patients with unsuppressed viremia. HIV neurotropism is primarily determined by the viral envelope (env) gene. To identify amino acid signatures in the HIV env gene predictive of HAD, we developed a machine learning pipeline using the PART rule-learning algorithm and C4.5 decision tree inducer to train a classifier on a meta-dataset (n = 860 env sequences from 78 patients: 40 HAD, 38 non-HAD). To increase the flexibility and biological relevance of our analysis, we included 4 numeric factors describing amino acid hydrophobicity, polarity, bulkiness, and charge, in addition to amino acid identities. The classifier had 75% predictive accuracy in leave-one-out cross-validation, and identified 5 signatures associated with HAD diagnosis (p<0.05, Fisher's exact test). These HAD signatures were found in the majority of brain sequences from 8 of 10 HAD patients from an independent cohort. Additionally, 2 HAD signatures were validated against env sequences from CSF of a second independent cohort. This analysis provides insight into viral genetic determinants associated with HAD, and develops novel methods for applying machine learning tools to analyze the genetics of rapidly evolving pathogens.


Assuntos
Complexo AIDS Demência/virologia , Inteligência Artificial , HIV-1/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Algoritmos , Motivos de Aminoácidos , Encéfalo/virologia , Biologia Computacional/métodos , Bases de Dados Genéticas , HIV-1/patogenicidade , Humanos , Filogenia , Reprodutibilidade dos Testes , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
3.
AIDS Res Ther ; 7: 43, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21156070

RESUMO

BACKGROUND: The population of HIV replicating within a host consists of independently evolving and interacting sub-populations that can be genetically distinct within anatomical compartments. HIV replicating within the brain causes neurocognitive disorders in up to 20-30% of infected individuals and is a viral sanctuary site for the development of drug resistance. The primary determinant of HIV neurotropism is macrophage tropism, which is primarily determined by the viral envelope (env) gene. However, studies of genetic aspects of HIV replicating in the brain are hindered because existing repositories of HIV sequences are not focused on neurotropic virus nor annotated with neurocognitive and neuropathological status. To address this need, we constructed the HIV Brain Sequence Database. RESULTS: The HIV Brain Sequence Database is a public database of HIV envelope sequences, directly sequenced from brain and other tissues from the same patients. Sequences are annotated with clinical data including viral load, CD4 count, antiretroviral status, neurocognitive impairment, and neuropathological diagnosis, all curated from the original publication. Tissue source is coded using an anatomical ontology, the Foundational Model of Anatomy, to capture the maximum level of detail available, while maintaining ontological relationships between tissues and their subparts. 44 tissue types are represented within the database, grouped into 4 categories: (i) brain, brainstem, and spinal cord; (ii) meninges, choroid plexus, and CSF; (iii) blood and lymphoid; and (iv) other (bone marrow, colon, lung, liver, etc). Patient coding is correlated across studies, allowing sequences from the same patient to be grouped to increase statistical power. Using Cytoscape, we visualized relationships between studies, patients and sequences, illustrating interconnections between studies and the varying depth of sequencing, patient number, and tissue representation across studies. Currently, the database contains 2517 envelope sequences from 90 patients, obtained from 22 published studies. 1272 sequences are from brain; the remaining 1245 are from blood, lymph node, spleen, bone marrow, colon, lung and other non-brain tissues. The database interface utilizes a faceted interface, allowing real-time combination of multiple search parameters to assemble a meta-dataset, which can be downloaded for further analysis. CONCLUSIONS: This online resource, which is publicly available at http://www.HIVBrainSeqDB.org, will greatly facilitate analysis of the genetic aspects of HIV macrophage tropism, HIV compartmentalization and evolution within the brain and other tissue reservoirs, and the relationship of these findings to HIV-associated neurological disorders and other clinical consequences of HIV infection.

4.
BMC Microbiol ; 9: 243, 2009 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19943957

RESUMO

BACKGROUND: Wolbachia (wBm) is an obligate endosymbiotic bacterium of Brugia malayi, a parasitic filarial nematode of humans and one of the causative agents of lymphatic filariasis. There is a pressing need for new drugs against filarial parasites, such as B. malayi. As wBm is required for B. malayi development and fertility, targeting wBm is a promising approach. However, the lifecycle of neither B. malayi nor wBm can be maintained in vitro. To facilitate selection of potential drug targets we computationally ranked the wBm genome based on confidence that a particular gene is essential for the survival of the bacterium. RESULTS: wBm protein sequences were aligned using BLAST to the Database of Essential Genes (DEG) version 5.2, a collection of 5,260 experimentally identified essential genes in 15 bacterial strains. A confidence score, the Multiple Hit Score (MHS), was developed to predict each wBm gene's essentiality based on the top alignments to essential genes in each bacterial strain. This method was validated using a jackknife methodology to test the ability to recover known essential genes in a control genome. A second estimation of essentiality, the Gene Conservation Score (GCS), was calculated on the basis of phyletic conservation of genes across Wolbachia's parent order Rickettsiales. Clusters of orthologous genes were predicted within the 27 currently available complete genomes. Druggability of wBm proteins was predicted by alignment to a database of protein targets of known compounds. CONCLUSION: Ranking wBm genes by either MHS or GCS predicts and prioritizes potentially essential genes. Comparison of the MHS to GCS produces quadrants representing four types of predictions: those with high confidence of essentiality by both methods (245 genes), those highly conserved across Rickettsiales (299 genes), those similar to distant essential genes (8 genes), and those with low confidence of essentiality (253 genes). These data facilitate selection of wBm genes for entry into drug design pipelines.


Assuntos
Brugia Malayi/microbiologia , Biologia Computacional , Genes Bacterianos/genética , Simbiose , Wolbachia/genética , Animais , Sequência Conservada/genética , Desenho de Fármacos , Genoma Bacteriano , Rickettsiaceae/genética
5.
Proc Natl Acad Sci U S A ; 102(17): 6103-7, 2005 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-15802467

RESUMO

To investigate retroviral integration targeting on a nucleotide scale, we examined the base frequencies directly surrounding cloned in vivo HIV-1, murine leukemia virus, and avian sarcoma/leukosis virus integrations. Base preferences of up to 2-fold the expected frequencies were found for three viruses, representing P values down to <10(-100) and defining what appear to be preferred integration sequences. Offset symmetry reflecting the topology of the integration reaction was found for HIV-1 and avian sarcoma/leukosis virus but not murine leukemia virus, suggesting fundamental differences in the way different retroviral integration complexes interact with host-cell DNA.


Assuntos
Alpharetrovirus/genética , HIV-1/genética , Composição de Bases , Sequência de Bases , Clonagem Molecular , Células HeLa , Humanos , Integração Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...