Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 287, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581592

RESUMO

The rumen microbiota is important for energy and nutrient acquisition in cattle, and therefore its composition may also affect carcass merit and meat quality attributes. In this study, we examined the associations between archaeal and bacterial taxa in the rumen microbiota of beef cattle and 12 different attributes, including hot carcass weight (HCW), dressing percentage, ribeye area (REA), intramuscular fat content, marbling score, fat thickness, yield grade, moisture content, purge loss, and shear force. There were significant correlations between the relative abundance of certain archaeal and bacterial genera and these attributes. Notably, Selenomonas spp. were positively correlated with live weight and HCW, while also being negatively correlated with purge loss. Members of the Christensenellaceae R-7, Moryella, and Prevotella genera exhibited positive and significant correlations with various attributes, such as dressing percentage and intramuscular fat content. Ruminococcaceae UCG-001 was negatively correlated with live weight, HCW, and dressing percentage, while Acidaminococcus and Succinivibrionaceae UCG-001 were negatively correlated with intramuscular fat content, moisture content, and marbling score. Overall, our findings suggest that specific changes in the rumen microbiota could be a valuable tool to improve beef carcass merit and meat quality attributes. Additional research is required to better understand the relationship between the rumen microbiota and these attributes, with the potential to develop microbiome-targeted strategies for enhancing beef production. KEY POINTS: • Certain rumen bacteria were associated with carcass merit and meat quality • Moryella was positively correlated with intramuscular fat in beef carcasses • Acidaminococcus spp. was negatively correlated with marbling and intramuscular fat.


Assuntos
Composição Corporal , Microbiota , Bovinos , Animais , Rúmen , Carne/análise , Bactérias , Archaea
2.
Front Vet Sci ; 11: 1360398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384959

RESUMO

Introduction: The rise in antibiotic resistant pathogens associated with bovine respiratory disease (BRD) poses a serious challenge, particularly to the beef feedlot industry, as they currently depend on antibiotics to prevent BRD to mitigate the financial burden (approx. $1 billion annual loss) inflicted by BRD-associated high mortality and morbidity in feedlot cattle. Thus, there is an impetus need for the development of antimicrobial alternative strategies against BRD. This study aimed to screen and select candidate essential oils (EOs) for the development of an intranasal EO spray that can inhibit BRD pathogens and promote microbiota-mediated respiratory health. Methods: The effects of selected EOs (ajowan, cinnamon leaf, citronella, grapefruit, fennel, and thyme) on a bovine nasopharyngeal microbiota culture were evaluated using 16S rRNA gene sequencing. The microbiota culture was enriched by incubating nasopharyngeal swabs obtained from finishing beef heifers in brain heart infusion broth with and without EOs (0.025%, v/v). These EOs were then also evaluated for their immunomodulatory effects on bovine turbinate (BT) cells by analyzing the concentrations of 15 cytokines and chemokines in cell culture after 24 h incubation. The crystal violet assay was done to assess the antibiofilm activity of EOs against Escherichia coli UMN026 strain. Finally, 15 EOs were screened for their antiviral activity against the bovine viral diarrhea virus 1 (BVDV-1) using BT cells and a fluorescence-based method. Results: Ajowan, fennel, and thyme resulted in a moderate reduction of overall nasopharyngeal microbiota growth with significant alterations of both alpha and beta diversity, and the relative abundance of predominant bacterial families (e.g., increasing Enterobacteriaceae and decreasing Moraxellaceae) compared to the control (p < 0.05). Co-incubation of BT cells with selected EOs resulted in minimal alterations in cytokine and chemokine levels (p > 0.05). Ajowan, thyme, fennel, and cinnamon leaf exhibited antibiofilm activity at concentrations of 0.025 and 0.05%. Reduction of BVDV-1 replication in BT cells was observed with thyme (strong), and ajowan and citronella (moderate) at 0.0125% concentration. Discussion: Accordingly, ajowan, thyme, fennel, cinnamon leaf, and citronella EOs were selected for further development as an intranasal EO spray to prevent and control of BRD pathogens in feedlot cattle.

3.
Sci Rep ; 14(1): 823, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191803

RESUMO

Five essential oils (EOs) were previously characterized in vitro and identified as candidate EOs for the development of an intranasal EO spray to mitigate bovine respiratory disease (BRD) pathogens. In the present study, these EOs were evaluated for their potential to (i) reduce BRD pathogens, (ii) modulate nasopharyngeal microbiota, and (iii) influence animal performance, feeding behavior and immune response when a single dose administered intranasally to feedlot cattle. Forty beef steer calves (7-8 months old, Initial body weight = 284 ± 5 kg [SE]) received either an intranasal EO spray (ajowan, thyme, fennel, cinnamon leaf, and citronella) or PBS (Control; n = 20/group) on day 0. Deep nasopharyngeal swabs were collected on days (d) -1, 1, 2, 7, 14, 28, and 42 and processed for 16S rRNA gene sequencing, qPCR, and culturing. Significant effects of EO on community structure (d1), microbial richness and diversity, relative abundance of some dominant phyla (d1, d2, and d14), and the overall interaction network structure of the nasopharyngeal microbiota were detected. The relative abundance of Mannheimia was lower in the EO calves (4.34%) than in Control calves (10.4%) on d2, and M. haemolytica prevalence on d7 as compared to control calves. Feed intake, average daily gain, feeding behavior, and blood cell counts were not affected by EO treatment. Overall, a single intranasal dose of EO spray resulted in moderate modulation of nasopharyngeal microbiota and short-term inhibition of Mannheimia while not influencing animal performance, feeding behavior or immune response. Our study, for the first time, shows the potential use of intranasal EO to mitigate BRD in feedlot cattle.


Assuntos
Mannheimia , Microbiota , Óleos Voláteis , Bovinos , Animais , Projetos Piloto , RNA Ribossômico 16S , Óleos Voláteis/farmacologia
4.
Microorganisms ; 11(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138126

RESUMO

Antimicrobial use (AMU) in the livestock industry has been associated with increased levels of antimicrobial resistance. Recently, there has been an increase in the number of "natural" feedlots in the beef cattle sector that raise cattle without antibiotics. Shotgun metagenomics was employed to characterize the impact of AMU in feedlot cattle on the microbiome, resistome, and mobilome. Sequenced fecal samples identified a decline (q < 0.01) in the genera Methanobrevibacter and Treponema in the microbiome of naturally vs. conventionally raised feedlot cattle, but this difference was not (q > 0.05) observed in catch basin samples. No differences (q > 0.05) were found in the class-level resistome between feedlot practices. In fecal samples, decreases from conventional to natural (q < 0.05) were noted in reads for the antimicrobial-resistant genes (ARGs) mefA, tet40, tetO, tetQ, and tetW. Plasmid-associated ARGs were more common in feces from conventional than natural feedlot cattle. Interestingly, more chromosomal- than plasmid-associated macrolide resistance genes were observed in both natural and conventional feedlots, suggesting that they were more stably conserved than the predominately plasmid-associated tetracycline resistance genes. This study suggests that generationally selected resistomes through decades of AMU persist even after AMU ceases in natural production systems.

5.
Microbiol Resour Announc ; 12(12): e0091023, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37971276

RESUMO

We report here the draft genome sequences of Brevibacterium casei (n = 1), Heyndrickxia oleronia (n = 1), Kocuria palustris (n =1), Microbacterium spp. (n = 5), Staphylococcus cohnii (n = 3), and Staphylococcus epidermidis isolated from high-touch surfaces in washrooms at a post-secondary institution.

6.
Microbiol Spectr ; 11(6): e0273223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37921486

RESUMO

IMPORTANCE: Emerging evidence suggests that microbiome-targeted approaches may provide a novel opportunity to reduce the incidence of reproductive failures in cattle. To develop such microbiome-based strategies, one of the first logical steps is to identify reproductive microbiome features related to fertility and to isolate the fertility-associated microbial species for developing a future bacterial consortium that could be administered before breeding to enhance pregnancy outcomes. Here, we characterized the vaginal and uterine microbiota in beef cattle that became pregnant or remained open via artificial insemination and identified microbiota features associated with fertility. We compared similarities between vaginal and uterine microbiota and between heifers and cows. Using culturing, we provided new insights into the culturable fraction of the vaginal and uterine microbiota and their antimicrobial resistance. Overall, our findings will serve as an important basis for future research aimed at harnessing the vaginal and uterine microbiome for improved cattle fertility.


Assuntos
Microbiota , Reprodução , Gravidez , Bovinos , Animais , Feminino , Vagina/microbiologia , Inseminação Artificial/veterinária , Fertilidade
7.
Microbiol Spectr ; 11(6): e0172223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37815394

RESUMO

IMPORTANCE: The swine gut microbiome undergoes an age-dependent assembly pattern with a developmental phase at early ages and a stabilization phase at later ages. Shorter time intervals and a wider range of data sources provided a clearer understanding of the gut microbiota colonization and succession and their associations with pig growth and development. The rapidly changing microbiota of suckling and weaning pigs implies potential time targets for growth and health regulation through gut microbiota manipulation. Since swine gut microbiota development is predictable, swine microbiota age can be calculated and compared between animal treatment groups rather than relying only on static time-matched comparisons.


Assuntos
Microbioma Gastrointestinal , Microbiota , Suínos , Animais , Microbioma Gastrointestinal/fisiologia , RNA Ribossômico 16S , Desmame
8.
Front Microbiol ; 14: 1207601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434710

RESUMO

Early life microbial colonization and factors affecting colonization patterns are gaining interest due to recent developments suggesting that early life microbiome may play a role in Developmental Origins of Health and Disease. In cattle, limited information exists on the early microbial colonization of anatomical sites involved in bovine health beyond the gastrointestinal tract. Here, we investigated 1) the initial microbial colonization of seven different anatomical locations in newborn calves and 2) whether these early life microbial communities and 3) serum cytokine profiles are influenced by prenatal vitamin and mineral (VTM) supplementation. Samples were collected from the hoof, liver, lung, nasal cavity, eye, rumen (tissue and fluid), and vagina of beef calves that were born from dams that either received or did not receive VTM supplementation throughout gestation (n = 7/group). Calves were separated from dams immediately after birth and fed commercial colostrum and milk replacer until euthanasia at 30 h post-initial colostrum feeding. The microbiota of all samples was assessed using 16S rRNA gene sequencing and qPCR. Calf serum was subjected to multiplex quantification of 15 bovine cytokines and chemokines. Our results indicated that the hoof, eye, liver, lung, nasal cavity, and vagina of newborn calves were colonized by site-specific microbiota, whose community structure differed from the ruminal-associated communities (0.64 ≥ R2 ≥ 0.12, p ≤ 0.003). The ruminal fluid microbial community was the only one that differed by treatment (p < 0.01). However, differences (p < 0.05) by treatment were detected in microbial richness (vagina); diversity (ruminal tissue, fluid, and eye); composition at the phylum and genus level (ruminal tissue, fluid, and vagina); and in total bacterial abundance (eye and vagina). From serum cytokines evaluated, concentration of chemokine IP-10 was greater (p = 0.02) in VTM calves compared to control calves. Overall, our results suggest that upon birth, the whole-body of newborn calves are colonized by relatively rich, diverse, and site-specific bacterial communities. Noticeable differences were observed in ruminal, vaginal, and ocular microbiota of newborn calves in response to prenatal VTM supplementation. These findings can derive future hypotheses regarding the initial microbial colonization of different body sites, and on maternal micronutrient consumption as a factor that may influence early life microbial colonization.

9.
Microb Genom ; 9(7)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37439777

RESUMO

Conventional swine production typically houses pigs indoors and in large groups, whereas pasture-raised pigs are reared outdoors at lower stocking densities. Antimicrobial use also differs, with conventionally raised pigs often being exposed to antimicrobials directly or indirectly to control and prevent infectious disease. However, antimicrobial use can be associated with the development and persistence of antimicrobial resistance. In this study, we used shotgun metagenomic sequencing to compare the gut microbiomes and resistomes of pigs raised indoors on a conventional farm with those raised outdoors on pasture. The microbial compositions as well as the resistomes of both groups of pigs were significantly different from each other. Bacterial species such as Intestinibaculum porci, Pseudoscardovia radai and Sharpea azabuensis were relatively more abundant in the gut microbiomes of pasture-raised pigs and Hallella faecis and Limosilactobacillus reuteri in the conventionally raised swine. The abundance of antimicrobial resistance genes (ARGs) was significantly higher in the conventionally raised pigs for nearly all antimicrobial classes, including aminoglycosides, beta-lactams, macrolides-lincosamides-streptogramin B, and tetracyclines. Functionally, the gut microbiomes of the two group of pigs also differed significantly based on their carbohydrate-active enzyme (CAZyme) profiles, with certain CAZyme families associated with host mucin degradation enriched in the conventional pig microbiomes. We also recovered 1043 dereplicated strain-level metagenome-assembled genomes (≥90 % completeness and <5 % contamination) to provide taxonomic context for specific ARGs and metabolic functions. Overall, the study provides insights into the differences between the gut microbiomes and resistomes of pigs raised under two very different production systems.


Assuntos
Anti-Infecciosos , Microbioma Gastrointestinal , Animais , Suínos , Microbioma Gastrointestinal/genética , Farmacorresistência Bacteriana/genética , Fezes/microbiologia , Antibacterianos/farmacologia
10.
Microbiol Resour Announc ; 12(9): e0042723, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37489918

RESUMO

Here, we present the coding-complete genomes of 11 lytic bacteriophages isolated from bovine ruminal fluid and vaginal swabs that can infect the bacterial hosts Alkalihalobacillus clausii, Bacillus safensis, and Escherichia coli.

11.
Sci Rep ; 13(1): 8121, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208436

RESUMO

A growing number of studies have investigated the feasibility of utilizing hemp by-products as livestock feedstuffs; however, their impact on livestock microbiomes remains unexplored. Here, we evaluated the effects of feeding hempseed cake on the gastrointestinal, respiratory, and reproductive microbiota in beef heifers. Angus-crossbred heifers (19-months old, initial body weight = 494 ± 10 kg [SE]) were fed a corn-based finishing diet containing 20% hempseed cake as a substitute for 20% corn dried distillers' grains with solubles (DM basis; Control; n = 16/group) for 111 days until slaughter. Ruminal fluid and deep nasopharyngeal swabs (days 0, 7, 42, 70 and 98), and vaginal and uterine swabs (at slaughter) were collected, and the microbiota assessed using 16S rRNA gene sequencing. Diet affected the community structure of the ruminal (d 7-98; 0.06 ≤ R2 ≤ 0.12; P < 0.05), nasopharyngeal (d 98; R2 = 0.18; P < 0.001), and vaginal (R2 = 0.06; P < 0.01) microbiota. Heifers fed hempseed cake had increased microbial diversity in the rumen, reduced microbial richness in the vagina, and greater microbial diversity and richness in the uterus. In addition to the distinct microbial communities in the rumen, nasopharynx, vagina and uterus, we identified 28 core taxa that were shared (≥ 60% of all samples) across these sampling locations. Feeding hempseed cake appeared to alter the bovine gut, respiratory and reproductive microbiota. Our results suggest that future research aiming to evaluate the use of hemp by-products in livestock diet should consider their impact on animal microbiome and microbiome mediated animal health and reproductive efficiency. Our findings also highlight the need for research evaluating the impact of hemp-associated food and personal care products on the human microbiome.


Assuntos
Ração Animal , Dieta , Humanos , Bovinos , Animais , Feminino , Lactente , Ração Animal/análise , RNA Ribossômico 16S/genética , Dieta/veterinária , Silagem/análise , Reprodução , Zea mays/química , Rúmen
12.
Microbiol Spectr ; : e0518022, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36916922

RESUMO

In this study, we evaluated the seminal and fecal microbiota in yearling beef bulls fed a common diet to achieve moderate (1.13 kg/day) or high (1.80 kg/day) rates of weight gain. Semen samples were collected on days 0 and 112 of dietary intervention (n = 19/group) as well as postbreeding (n = 6/group) using electroejaculation, and the microbiota was assessed using 16S rRNA gene sequencing, quantitative PCR (qPCR), and culturing. The fecal microbiota was also evaluated, and its similarity with seminal microbiota was assessed. A subset of seminal bacterial isolates (n = 33) was screened for resistance against 28 antibiotics. A complex and dynamic microbiota was detected in bovine semen, and the community structure was affected by sampling time (R2 = 0.16, P < 0.001). Microbial richness increased significantly from day 0 to day 112, and diversity increased after breeding (P > 0.05). Seminal microbiota remained unaffected by the differential rates of gain, and its overall composition was distinct from fecal microbiota, with only 6% of the taxa shared between them. A total of 364 isolates from 49 different genera were recovered under aerobic and anaerobic culturing. Among these seminal isolates were pathogenic species and those resistant to several antibiotics. Overall, our results suggest that bovine semen harbors a rich and complex microbiota which changes over time and during the breeding season but appears to be resilient to differential gains achieved via a common diet. Seminal microbiota is distinct from the fecal microbiota and harbors potentially pathogenic and antibiotic-resistant bacterial species. IMPORTANCE Increasing evidence from human and other animal species supports the existence of a commensal microbiota in semen and that this seminal microbiota may influence not only sperm quality and fertility but also female reproduction. Seminal microbiota in bulls and its evolution and factors shaping this community, however, remain largely underexplored. In this study, we characterized the seminal microbiota of yearling beef bulls and its response to the bull age, different weight gains, and mating activity. We compared bacterial composition between seminal and fecal microbiota and evaluated the diversity of culturable seminal bacteria and their antimicrobial resistance. Our results obtained from sequencing, culturing, and antibiotic susceptibility testing provide novel information on the taxonomic composition, evolution, and factors shaping the seminal microbiota of yearling beef bulls. This information will serve as an important basis for further understanding of the seminal microbiome and its involvement in reproductive health and fertility in cattle.

13.
Microorganisms ; 11(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838386

RESUMO

Biofilm formation can lead to the persistence of Salmonella Typhimurium (ST) and E. coli O157:H7 (O157). This study investigated the impact of meat processing surface bacteria (MPB) on biofilm formation by O157 (non-biofilm former; NF) and ST (strong biofilm former; BF). MPB were recovered from the contacting surfaces (CS), non-contacting surfaces (NCS), and roller surfaces (RS) of a beef plant conveyor belt after sanitation. O157 and ST were co-inoculated with MPB (CO), or after a delay of 48 h (IS), into biofilm reactors containing stainless steel coupons and incubated at 15 °C for up to 144 h. Coupons were withdrawn at various intervals and analyzed by conventional plating and 16S rRNA gene amplicon sequencing. The total bacterial counts in biofilms reached approximately 6.5 log CFU/cm2, regardless of MPB type or development mode. The mean counts for O157 and ST under equivalent conditions mostly did not differ (p > 0.05), except for the IS set at 50 h, where no O157 was recovered. O157 and ST were 1.6 ± 2.1% and 4.7 ± 5.0% (CO) and 1.1 ± 2.2% and 2.0 ± 2.8% (IS) of the final population. Pseudomonas dominated the MPB inocula and biofilms, regardless of MPB type or development mode. Whether or not a pathogen is deemed BF or NF in monoculture, its successful integration into complex multi-species biofilms ultimately depends on the presence of certain other residents within the biofilm.

14.
Microbiol Resour Announc ; 12(3): e0127422, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36779713

RESUMO

Here, we present the first draft genome sequences of 10 bacterial strains that were isolated from the rumen, nasopharynx, vagina, or uterus of healthy beef cattle. These genomes are from one Alkalihalobacillus clausii isolate, three Bacillus safensis isolates, five Escherichia coli isolates, and one Pasteurella multocida isolate.

15.
Front Biosci (Elite Ed) ; 14(3): 22, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36137987

RESUMO

BACKGROUND: A foal undergoes considerable growth and development from birth to weaning, progressing from a milk-based diet to complete herbivory. The symbiotic relationships between bacteria, archaea and fungi substantiate this energy demand by colonising the hindgut and remaining flexible throughout the diet transitions. METHODS: A total of 70 faecal samples were collected from 14 mares and their foals across five studs in NSW as they aged from 0 to 5 months old. DNA was extracted from faecal samples and underwent amplification and sequencing of the 16S rRNA gene V4 hypervariable region of archaea and bacteria, and the fungal internal transcribed spacer-1 (ITS1) region. The fungal and bacterial community structure was assessed using Bray-Curtis dissimilarities, and the effect of age at sampling and location was determined using PERMANOVA. RESULTS: Age at sampling had a substantial effect on the foal's archaeal and bacterial faecal microbiota (PERMANOVA: R2 = 0.16; p < 0.01), while the effect of geographical location was smaller but still significant (PERMANOVA: R2 = 0.07; p < 0.01). The overall abundance, diversity and richness of bacterial and archaeal populations increased (p < 0.01) as foals aged, most noticeably rising between foals 1 to 2 and 2 to 3 months of age. The 15 most relatively abundant fungal species were all environmental saprophytes, most strongly affected by geographical location (p < 0.01) rather than age at sampling. There was an effect of location on Preussia Africana (p = 0.02) and a location × age interaction for fungal species Preussia persica (p < 0.01), Acremonium furcatum (p = 0.04), and Podospora pseudocomata (p = 0.01). There was no effect of age, location, or location × age interaction on the relative abundance of the remaining fungal species. CONCLUSIONS: The faecal microbiome appeared to stabilise for most bacterial and archaeal genera by 2 to 3 months of age, resembling an adult mare. Bacterial genera isolated from faecal samples belonged mainly to the Firmicutes phylum. Age at sampling more strongly affected the archaeal and bacterial faecal microbiota than the effect of the geographical location where the horse was sampled. The lack of effect of location on microbe populations suggests that although environmental factors may influence population structure, there are distinct differences at each stage of foal maturation.


Assuntos
Microbiota , Animais , Bactérias/genética , Fezes/microbiologia , Feminino , Cavalos/genética , Microbiota/genética , RNA Ribossômico 16S/genética
16.
Microbiol Spectr ; 10(4): e0238022, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35880887

RESUMO

Pigs are among the most numerous and intensively farmed food-producing animals in the world. The gut microbiome plays an important role in the health and performance of swine and changes rapidly after weaning. Here, fecal samples were collected from pigs at 7 different times points from 7 to 140 days of age. These swine fecal metagenomes were used to assemble 1,150 dereplicated metagenome-assembled genomes (MAGs) that were at least 90% complete and had less than 5% contamination. These MAGs represented 472 archaeal and bacterial species, and the most widely distributed MAGs were the uncultured species Collinsella sp002391315, Sodaliphilus sp004557565, and Prevotella sp000434975. Weaning was associated with a decrease in the relative abundance of 69 MAGs (e.g., Escherichia coli) and an increase in the relative abundance of 140 MAGs (e.g., Clostridium sp000435835, Oliverpabstia intestinalis). Genes encoding for the production of the short-chain fatty acids acetate, butyrate, and propionate were identified in 68.5%, 18.8%, and 8.3% of the MAGs, respectively. Carbohydrate-active enzymes associated with the degradation of arabinose oligosaccharides and mixed-linkage glucans were predicted to be most prevalent among the MAGs. Antimicrobial resistance genes were detected in 327 MAGs, including 59 MAGs with tetracycline resistance genes commonly associated with pigs, such as tet(44), tet(Q), and tet(W). Overall, 82% of the MAGs were assigned to species that lack cultured representatives indicating that a large portion of the swine gut microbiome is still poorly characterized. The results here also demonstrate the value of MAGs in adding genomic context to gut microbiomes. IMPORTANCE Many of the bacterial strains found in the mammalian gut are difficult to culture and isolate due to their various growth and nutrient requirements that are frequently unknown. Here, we assembled strain-level genomes from short metagenomic sequences, so-called metagenome-assembled genomes (MAGs), that were derived from fecal samples collected from pigs at multiple time points. The genomic context of a number of antimicrobial resistance genes commonly detected in swine was also determined. In addition, our study connected taxonomy with potential metabolic functions such as carbohydrate degradation and short-chain fatty acid production.


Assuntos
Microbioma Gastrointestinal , Metagenoma , Animais , Archaea/genética , Bactérias , Carboidratos , Microbioma Gastrointestinal/genética , Mamíferos/genética , Metagenômica/métodos , Suínos
17.
Front Microbiol ; 13: 835913, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633729

RESUMO

This study characterized the nutritive and microbial profiles and the fermentation characteristics of silage with the following compositions on a dry matter (DM) basis: (1) 100% sorghum, (2) 70% sorghum + 30% carrot or pumpkin, and (3) 40% sorghum + 60% carrot or pumpkin. The treatments were further divided based on the addition or no addition of a probiotic inoculant. After 70 days of ensiling, the silage was incubated for 48 h using the in vitro batch culture technique. Crude protein and non-fiber carbohydrates in the silage increased (P ≤ 0.01) by 5.7 percent point (pp) and 9.6 pp, respectively, with pumpkin at 60% DM. The V4 region of the 16S rRNA gene was sequenced to profile pre-ensiled and ensiled archeal and bacterial communities. Silages containing carrot or pumpkin strongly influenced the microbial structure (PERMANOVA: R 2 = 0.75; P < 0.001), despite the ensiled treatments being dominated by Lactobacillus spp., except for the control, which was dominated by Weissella and Pediococcus spp. (P < 0.01). Linear discriminant analysis indicated that carrot and pumpkin silages were responsible for the increased relative abundance of Lactobacillus and Acinetobacter spp. (log LDA score ≥ 2), respectively. After 48 h of incubation, carrot and pumpkin inclusion increased (P < 0.01) the in vitro DM digestibility by 22.5 and 31.3%, increased the total volatile fatty acids (VFAs) by 16 and 20.6% (P < 0.01), respectively, and showed a tendency (P = 0.07) to increase the gas production. Therefore, this study supports the use of carrot or pumpkin in sorghum silages to maximize feed digestibility and total VFA concentrations.

18.
Microbiol Spectr ; 9(3): e0198021, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34787441

RESUMO

Antimicrobial use in food-producing animals has come under increasing scrutiny due to its potential association with antimicrobial resistance (AMR). Monitoring of AMR in indicator microorganisms such as Enterococcus spp. in meat production facilities and retail meat products can provide important information on the dynamics and prevalence of AMR in these environments. In this study, swabs or samples were obtained from various locations in a commercial beef packing operation (n = 600) and from retail ground beef (n = 60) over a 19-month period. All samples/swabs were enriched for Enterococcus spp., and suspected enterococci isolates were identified using species-specific PCR primers. Enterococcus faecalis was the most frequently isolated species, followed by Enterococcus hirae, which was found mostly on post-hide removal carcasses and in ground beef. Enterococcus faecium (n = 9) and E. faecalis (n = 120) isolates were further characterized for AMR. Twenty-one unique AMR profiles were identified, with 90% of isolates resistant to at least two antimicrobials and two that were resistant to nine antimicrobials. Tetracycline resistance was observed most often in E. faecalis (28.8%) and was likely mediated by tet(M). Genomic analysis of selected E. faecalis and E. faecium isolates revealed that many of the isolates in this study clustered with other publicly available genomes from ground beef, suggesting that these strains are well adapted to the beef processing environment. IMPORTANCE Antimicrobial resistance (AMR) is a serious challenge facing the agricultural industry. Understanding the flow of antimicrobial-resistant bacteria through the beef fabrication process and into ground beef is an important step in identifying intervention points for reducing AMR. In this study, we used enterococci as indicator bacteria for monitoring AMR in a commercial beef packaging facility and in retail ground beef over a 19-month period. Although washing of carcasses post-hide removal reduced the isolation frequency of Enterococcus spp., a number of antimicrobial-resistant Enterococcus faecalis isolates were recovered from ground beef produced in the packaging plant. Genome analysis showed that several E. faecalis isolates were genetically similar to publicly available isolates recovered from retail ground beef in the United States.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Enterococcus/efeitos dos fármacos , Enterococcus/isolamento & purificação , Carne/microbiologia , Animais , Bovinos , Enterococcus/classificação , Enterococcus/genética , Contaminação de Alimentos/análise , Contaminação de Alimentos/economia , Manipulação de Alimentos , Carne/economia , Testes de Sensibilidade Microbiana , Estados Unidos
19.
mSystems ; 6(6): e0068221, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34812652

RESUMO

Piglets are often weaned between 19 and 22 days of age in North America, although in some swine operations this may occur at 14 days or less. Piglets are abruptly separated from their sow at weaning and are quickly transitioned from sow's milk to a plant-based diet. The effect of weaning age on the long-term development of the pig gut microbiome is largely unknown. Here, pigs were weaned at either 14, 21, or 28 days of age, and fecal samples were collected 20 times from day 4 (neonatal) through marketing at day 140. The fecal microbiome was characterized using 16S rRNA gene and shotgun metagenomic sequencing. The fecal microbiome of all piglets shifted significantly 3 to 7 days postweaning, with an increase in microbial diversity. Several Prevotella spp. increased in relative abundance immediately after weaning, as did butyrate-producing species such as Butyricicoccus porcorum, Faecalibacterium prausnitzii, and Megasphaera elsdenii. Within 7 days of weaning, the gut microbiome of pigs weaned at 21 and 28 days of age resembled that of pigs weaned at 14 days. Resistance genes to most antimicrobial classes decreased in relative abundance postweaning, with the exception of those conferring resistance to tetracyclines and macrolides-lincosamides-streptogramin B. The relative abundance of microbial carbohydrate-active enzymes (CAZymes) changed significantly in the postweaning period, with an enrichment of CAZymes involved in degradation of plant-derived polysaccharides. These results demonstrate that the pig gut microbiome tends change in a predictable manner postweaning and that weaning age has only a temporary effect on this microbiome. IMPORTANCE Piglets are abruptly separated from their sow at weaning and are quickly transitioned from sow's milk to a plant-based diet. This is the most important period in commercial swine production, yet the effect of weaning age on the long-term development of the pig gut microbiome is largely unknown. Metagenomic sequencing allows for a higher-resolution assessment of the pig gut microbiome and enables characterization of the resistome. Here, we used metagenomic sequencing to identify bacterial species that were enriched postweaning and therefore may provide targets for future manipulation studies. In addition, functional profiling of the microbiome indicated that many carbohydrate and metabolic enzymes decrease in relative abundance after weaning. This study also highlights the challenges faced in reducing antimicrobial resistance in pigs, as genes conferring tetracycline and macrolide resistance remained relatively stable from 7 days of age through to market weight at 140 days despite no exposure to antimicrobials.

20.
Microorganisms ; 9(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34683332

RESUMO

In the present study, we evaluated whether the nasopharyngeal, ruminal, and vaginal microbiota would diverge (1) in virgin yearling beef heifers (9 months old) due to the maternal restricted gain during the first trimester of gestation; and (2) in pregnant beef heifers in response to the vitamin and mineral (VTM) supplementation during the first 6 months of pregnancy. As a secondary objective, using the microbiota data obtained from these two cohorts of beef heifers managed at the same location and sampled at the same time, we performed a holistic assessment of the microbial ecology residing within the respiratory, gastrointestinal, and reproductive tract of cattle. Our 16S rRNA gene sequencing results revealed that both α and ß-diversity of the nasopharyngeal, ruminal and vaginal microbiota did not differ between virgin heifers raised from dams exposed to either a low gain (targeted average daily gain of 0.28 kg/d, n = 22) or a moderate gain treatment (0.79 kg/d, n = 23) during the first 84 days of gestation. Only in the vaginal microbiota were there relatively abundant genera that were affected by maternal rate of gain during early gestation. Whilst there was no significant difference in community structure and diversity in any of the three microbiota between pregnant heifers received no VTM (n = 15) and VTM supplemented (n = 17) diets, the VTM supplementation resulted in subtle compositional alterations in the nasopharyngeal and ruminal microbiota. Although the nasopharyngeal, ruminal, and vaginal microbiota were clearly distinct, a total of 41 OTUs, including methanogenic archaea, were identified as core taxa shared across the respiratory, gastrointestinal, and reproductive tracts of both virgin and pregnant heifers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...