Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Biochem Cell Biol ; 134: 105961, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33662577

RESUMO

Connective tissue growth factor (CTGF, CCN2) is a matricellular protein which plays key roles in normal mammalian development and in tissue homeostasis and repair. In pathological conditions, dysregulated CCN2 has been associated with cancer, cardiovascular disease, and tissue fibrosis. In this study, genetic manipulation of the CCN2 gene was employed to investigate the role of CCN2 expression in vitro and in experimentally-induced models of pulmonary fibrosis and pulmonary arterial hypertension (PAH). Knocking down CCN2 using siRNA reduced expression of pro-fibrotic markers (fibronectin p < 0.01, collagen type I p < 0.05, α-SMA p < 0.0001, TIMP-1 p < 0.05 and IL-6 p < 0.05) in TGF-ß-treated lung fibroblasts derived from systemic sclerosis patients. In vivo studies were performed in mice using a conditional gene deletion strategy targeting CCN2 in a fibroblast-specific and time-dependent manner in two models of lung disease. CCN2 deletion significantly reduced pulmonary interstitial scarring and fibrosis following bleomycin-instillation, as assessed by fibrotic scores (wildtype bleomycin 3.733 ± 0.2667 vs CCN2 knockout (KO) bleomycin 4.917 ± 0.3436, p < 0.05) and micro-CT. In the well-established chronic hypoxia/Sugen model of pulmonary hypertension, CCN2 gene deletion resulted in a significant decrease in pulmonary vessel remodelling, less right ventricular hypertrophy and a reduction in the haemodynamic measurements characteristic of PAH (RVSP and RV/LV + S were significantly reduced (p < 0.05) in CCN2 KO compared to WT mice in hypoxic/SU5416 conditions). These results support a prominent role for CCN2 in pulmonary fibrosis and in vessel remodelling associated with PAH. Therefore, therapeutics aimed at blocking CCN2 function are likely to benefit several forms of severe lung disease.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/deficiência , Hipertensão Arterial Pulmonar/terapia , Fibrose Pulmonar/terapia , Animais , Antibióticos Antineoplásicos/farmacologia , Bleomicina/farmacologia , Células Cultivadas , Colágeno Tipo I/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Modelos Animais de Doenças , Deleção de Genes , Humanos , Camundongos , Camundongos Knockout , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
2.
J Tissue Eng Regen Med ; 14(4): 645-649, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32068954

RESUMO

Platelets are a recognised potent source of transforming growth factor-ß1 (TGFß1), a cytokine known to promote wound healing and regeneration by stimulating dermal fibroblast proliferation and extracellular matrix deposition. Platelet lysate has been advocated as a novel personalised therapeutic to treat persistent wounds, although the precise platelet-derived growth factors responsible for these beneficial effects have not been fully elucidated. The aim of this study was to investigate the specific role of platelet-derived TGFß1 in cutaneous wound healing. Using a transgenic mouse with a targeted deletion of TGFß1 in megakaryocytes and platelets (TGFß1fl/fl .PF4-Cre), we show for the first time that platelet-derived TGFß1 contributes to epidermal and dermal thickening and cellular turnover after excisional skin wounding. In vitro studies demonstrate that human dermal fibroblasts stimulated with platelet lysate containing high levels of platelet-derived TGFß1 did not exhibit enhanced collagen deposition or proliferation, suggesting that platelet-derived TGFß1 is not a key promoter of these wound healing processes. Interestingly, human keratinocytes displayed enhanced TGFß1-driven proliferation in response to platelet lysate, reminiscent of our in vivo findings. In summary, our novel findings define and emphasise an important role of platelet-derived TGFß1 in epidermal remodelling and regeneration processes during cutaneous wound healing.


Assuntos
Plaquetas/metabolismo , Proliferação de Células , Queratinócitos/metabolismo , Pele , Fator de Crescimento Transformador beta1/metabolismo , Cicatrização , Animais , Camundongos , Camundongos Knockout , Pele/lesões , Pele/metabolismo , Fator de Crescimento Transformador beta1/genética
3.
Elife ; 72018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29345617

RESUMO

Malignant mesothelioma (MM) is poorly responsive to systemic cytotoxic chemotherapy and invariably fatal. Here we describe a screen of 94 drugs in 15 exome-sequenced MM lines and the discovery of a subset defined by loss of function of the nuclear deubiquitinase BRCA associated protein-1 (BAP1) that demonstrate heightened sensitivity to TRAIL (tumour necrosis factor-related apoptosis-inducing ligand). This association is observed across human early passage MM cultures, mouse xenografts and human tumour explants. We demonstrate that BAP1 deubiquitinase activity and its association with ASXL1 to form the Polycomb repressive deubiquitinase complex (PR-DUB) impacts TRAIL sensitivity implicating transcriptional modulation as an underlying mechanism. Death receptor agonists are well-tolerated anti-cancer agents demonstrating limited therapeutic benefit in trials without a targeting biomarker. We identify BAP1 loss-of-function mutations, which are frequent in MM, as a potential genomic stratification tool for TRAIL sensitivity with immediate and actionable therapeutic implications.


Assuntos
Neoplasias Pulmonares/fisiopatologia , Mesotelioma/fisiopatologia , Proteínas Repressoras/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Mesotelioma Maligno , Camundongos
4.
Lab Anim ; 51(2): 160-169, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27307423

RESUMO

Rodent models produce data which underpin biomedical research and non-clinical drug trials, but translation from rodents into successful clinical outcomes is often lacking. There is a growing body of evidence showing that improving experimental design is key to improving the predictive nature of rodent studies and reducing the number of animals used in research. Age, one important factor in experimental design, is often poorly reported and can be overlooked. The authors conducted a survey to assess the age used for a range of models, and the reasoning for age choice. From 297 respondents providing 611 responses, researchers reported using rodents most often in the 6-20 week age range regardless of the biology being studied. The age referred to as 'adult' by respondents varied between six and 20 weeks. Practical reasons for the choice of rodent age were frequently given, with increased cost associated with using older animals and maintenance of historical data comparability being two important limiting factors. These results highlight that choice of age is inconsistent across the research community and often not based on the development or cellular ageing of the system being studied. This could potentially result in decreased scientific validity and increased experimental variability. In some cases the use of older animals may be beneficial. Increased scientific rigour in the choice of the age of rodent may increase the translation of rodent models to humans.


Assuntos
Envelhecimento , Pesquisa Biomédica/métodos , Camundongos/fisiologia , Ratos/fisiologia , Fatores Etários , Animais , Pesquisa Biomédica/normas , Terminologia como Assunto
5.
Am J Pathol ; 185(7): 1850-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25956031

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by lung endothelial cell dysfunction and vascular remodeling. Normally, the endothelium forms an integral cellular barrier to regulate vascular homeostasis. During embryogenesis endothelial cells exhibit substantial plasticity that contribute to cardiac development by undergoing endothelial-to-mesenchymal transition (EndoMT). We determined the presence of EndoMT in the pulmonary vasculature in vivo and the functional effects on pulmonary artery endothelial cells (PAECs) undergoing EndoMT in vitro. Histologic assessment of patients with systemic sclerosis-associated PAH and the hypoxia/SU5416 mouse model identified the presence von Willebrand factor/α-smooth muscle actin-positive endothelial cells in up to 5% of pulmonary vessels. Induced EndoMT in PAECs by inflammatory cytokines IL-1ß, tumor necrosis factor α, and transforming growth factor ß led to actin cytoskeleton reorganization and the development of a mesenchymal morphology. Induced EndoMT cells exhibited up-regulation of mesenchymal markers, including collagen type I and α-smooth muscle actin, and a reduction in endothelial cell and junctional proteins, including von Willebrand factor, CD31, occludin, and vascular endothelial-cadherin. Induced EndoMT monolayers failed to form viable biological barriers and induced enhanced leak in co-culture with PAECs. Induced EndoMT cells secreted significantly elevated proinflammatory cytokines, including IL-6, IL-8, and tumor necrosis factor α, and supported higher immune transendothelial migration compared with PAECs. These findings suggest that EndoMT may contribute to the development of PAH.


Assuntos
Citocinas/metabolismo , Transição Epitelial-Mesenquimal , Hipertensão Pulmonar/fisiopatologia , Animais , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio/fisiopatologia , Transição Epitelial-Mesenquimal/imunologia , Humanos , Pulmão/irrigação sanguínea , Pulmão/patologia , Camundongos , Artéria Pulmonar/citologia , Artéria Pulmonar/fisiopatologia , Regulação para Cima , Remodelação Vascular
6.
Am J Respir Crit Care Med ; 191(6): 665-77, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25606692

RESUMO

RATIONALE: Up to 10% of patients with systemic sclerosis (SSc) develop pulmonary arterial hypertension (PAH). This risk persists throughout the disease and is time dependent, suggesting that SSc is a susceptibility factor. Outcome for SSc-PAH is poor compared with heritable or idiopathic forms, despite clinical and pathological similarities. Although susceptibility in heritable PAH and idiopathic PAH is strongly associated with gene mutations leading to reduced expression of bone morphogenetic protein receptor (BMPR) II, these mutations have not been observed in SSc-PAH. OBJECTIVES: To explore BMPRII expression and function in a mouse model of SSc (TßRIIΔk-fib) that is susceptible to developing pulmonary hypertension and in SSc lung. METHODS: BMPRII and downstream signaling pathways were profiled in lung tissue and fibroblasts from the TßRIIΔk-fib model, which develops pulmonary vasculopathy with pulmonary hypertension that is exacerbated by SU5416. Complementary studies examined SSc or control lung tissue and fibroblasts. MEASUREMENTS AND MAIN RESULTS: Our study shows reduced BMPRII, impaired signaling, and altered receptor turnover activity in a transforming growth factor (TGF)-ß-dependent mouse model of SSc-PAH. Similarly, a significant reduction in BMPRII expression is observed in SSc lung tissue and fibroblasts. Increased proteasomal degradation of BMPRII appears to underlie this and may result from heightened TGF-ß activity. CONCLUSIONS: We found reduced BMPRII protein in patients with SSc-PAH and a relevant mouse model associated with increased proteasomal degradation of BMPRII. Collectively, these results suggest that impaired BMP signaling, resulting from TGF-ß-dependent increased receptor degradation, may promote PAH susceptibility in SSc and provide a unifying mechanism across different forms of PAH.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/fisiologia , Hipertensão Pulmonar/etiologia , Escleroderma Sistêmico/complicações , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Western Blotting , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/análise , Modelos Animais de Doenças , Fibroblastos/fisiologia , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Pulmão/química , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase , Complexo de Endopeptidases do Proteassoma/fisiologia , Escleroderma Sistêmico/metabolismo , Fator de Crescimento Transformador beta/análise
7.
Arthritis Rheumatol ; 67(1): 243-53, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25303440

RESUMO

OBJECTIVE: The excessive deposition of extracellular matrix, including type I collagen, is a key aspect in the pathogenesis of connective tissue diseases such as systemic sclerosis (SSc; scleroderma). To further our understanding of the mechanisms governing the dysregulation of type I collagen production in SSc, we investigated the role of the activator protein 1 (AP-1) family of transcription factors in regulating COL1A2 transcription. METHODS: The expression and nuclear localization of AP-1 family members (c-Jun, JunB, JunD, Fra-1, Fra-2, and c-Fos) were examined by immunohistochemistry and Western blotting in dermal biopsy specimens and explanted skin fibroblasts from patients with diffuse cutaneous SSc and healthy controls. Gene activation was determined by assessing the interaction of transcription factors with the COL1A2 enhancer using transient transfection of reporter gene constructs, electrophoretic mobility shift assays, chromatin immunoprecipitation analysis, and RNA interference involving knockdown of individual AP-1 family members. Inhibition of fibroblast mammalian target of rapamycin (mTOR), Akt, and glycogen synthase kinase 3ß (GSK-3ß) signaling pathways was achieved using small-molecule pharmacologic inhibitors. RESULTS: Binding of JunB to the COL1A2 enhancer was observed, with its coalescence directed by activation of gene transcription through the proximal promoter. Knockdown of JunB reduced enhancer activation and COL1A2 expression in response to transforming growth factor ß. In SSc dermal fibroblasts, increased mTOR/Akt signaling was associated with inactivation of GSK-3ß, leading to blockade of JunB degradation and, thus, constitutively high expression of JunB. CONCLUSION: In patients with SSc, the accumulation of JunB resulting from altered mTOR/Akt signaling and a failure of proteolytic degradation underpins the aberrant overexpression of type I collagen. These findings identify JunB as a potential target for antifibrotic therapy in SSc.


Assuntos
Colágeno Tipo I/metabolismo , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Pele/metabolismo , Pele/patologia , Fatores de Transcrição/metabolismo , Biópsia , Estudos de Casos e Controles , Células Cultivadas , Fibrose/metabolismo , Fibrose/patologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Escleroderma Sistêmico/fisiopatologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Fator de Transcrição AP-1/metabolismo
8.
Circ Res ; 114(4): 677-88, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24334027

RESUMO

RATIONALE: Evidence is increasing of a link between interferon (IFN) and pulmonary arterial hypertension (PAH). Conditions with chronically elevated endogenous IFNs such as systemic sclerosis are strongly associated with PAH. Furthermore, therapeutic use of type I IFN is associated with PAH. This was recognized at the 2013 World Symposium on Pulmonary Hypertension where the urgent need for research into this was highlighted. OBJECTIVE: To explore the role of type I IFN in PAH. METHODS AND RESULTS: Cells were cultured using standard approaches. Cytokines were measured by ELISA. Gene and protein expression were measured using reverse transcriptase polymerase chain reaction, Western blotting, and immunohistochemistry. The role of type I IFN in PAH in vivo was determined using type I IFN receptor knockout (IFNAR1(-/-)) mice. Human lung cells responded to types I and II but not III IFN correlating with relevant receptor expression. Type I, II, and III IFN levels were elevated in serum of patients with systemic sclerosis associated PAH. Serum interferon γ inducible protein 10 (IP10; CXCL10) and endothelin 1 were raised and strongly correlated together. IP10 correlated positively with pulmonary hemodynamics and serum brain natriuretic peptide and negatively with 6-minute walk test and cardiac index. Endothelial cells grown out of the blood of PAH patients were more sensitive to the effects of type I IFN than cells from healthy donors. PAH lung demonstrated increased IFNAR1 protein levels. IFNAR1(-/-) mice were protected from the effects of hypoxia on the right heart, vascular remodeling, and raised serum endothelin 1 levels. CONCLUSIONS: These data indicate that type I IFN, via an action of IFNAR1, mediates PAH.


Assuntos
Hipertensão Pulmonar/imunologia , Interferon-alfa/imunologia , Interferon beta/imunologia , Receptor de Interferon alfa e beta/imunologia , Escleroderma Sistêmico/imunologia , Animais , Células Cultivadas , Quimiocina CXCL10/imunologia , Quimiocina CXCL10/metabolismo , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/imunologia , Endotelina-1/imunologia , Endotelina-1/metabolismo , Hipertensão Pulmonar Primária Familiar , Humanos , Hipertensão Pulmonar/metabolismo , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Interferon beta/metabolismo , Interferon beta/farmacologia , Interferon gama/imunologia , Interferon gama/farmacologia , Pulmão/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Escleroderma Sistêmico/metabolismo , Transdução de Sinais/imunologia
9.
Arthritis Rheum ; 65(11): 2928-39, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23839959

RESUMO

OBJECTIVE: To delineate the constitutive pulmonary vascular phenotype of the TßRIIΔk-fib mouse model of scleroderma, and to selectively induce pulmonary endothelial cell injury using vascular endothelial growth factor (VEGF) inhibition to develop a model with features characteristic of pulmonary arterial hypertension (PAH). METHODS: The TßRIIΔk-fib mouse strain expresses a kinase-deficient transforming growth factor ß (TGFß) receptor type II driven by a fibroblast-specific promoter, leading to ligand-dependent up-regulation of TGFß signaling, and replicates key fibrotic features of scleroderma. Structural, biochemical, and functional assessments of pulmonary vessels, including in vivo hemodynamic studies, were performed before and following VEGF inhibition, which induced pulmonary endothelial cell apoptosis. These assessments included biochemical analysis of the TGFß and VEGF signaling axes in tissue sections and explanted smooth muscle cells. RESULTS: In the TßRIIΔk-fib mouse strain, a constitutive pulmonary vasculopathy with medial thickening, a perivascular proliferating chronic inflammatory cell infiltrate, and mildly elevated pulmonary artery pressure resembled the well-described chronic hypoxia model of pulmonary hypertension. Following administration of SU5416, the pulmonary vascular phenotype was more florid, with pulmonary arteriolar luminal obliteration by apoptosis-resistant proliferating endothelial cells. These changes resulted in right ventricular hypertrophy, confirming hemodynamically significant PAH. Altered expression of TGFß and VEGF ligand and receptor was consistent with a scleroderma phenotype. CONCLUSION: In this study, we replicated key features of systemic sclerosis-related PAH in a mouse model. Our results suggest that pulmonary endothelial cell injury in a genetically susceptible mouse strain triggers this complication and support the underlying role of functional interplay between TGFß and VEGF, which provides insight into the pathogenesis of this disease.


Assuntos
Endotélio Vascular/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Circulação Pulmonar/fisiologia , Escleroderma Sistêmico/fisiopatologia , Fator de Crescimento Transformador beta/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar , Feminino , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Hipóxia/genética , Hipóxia/fisiopatologia , Indóis/farmacologia , Óperon Lac , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pirróis/farmacologia , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/genética , Transdução de Sinais/fisiologia
10.
Arthritis Res Ther ; 15(3): 215, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23796020

RESUMO

Scleroderma (systemic sclerosis; SSc) is characterised by fibrosis of the skin and internal organs in the context of autoimmunity and vascular perturbation. Overproduction of extracellular matrix components and loss of specialised epithelial structures are analogous to the process of scar formation after tissue injury. Fibroblasts are the resident cells of connective tissue that become activated at sites of damage and are likely to be important effector cells in SSc. Differentiation into myofibroblasts is a hallmark process, although the mechanisms and cellular origins of this important fibroblastic cell are still unclear. This article reviews fibroblast biology in the context of SSc and highlights the potentially important place of fibroblast effector cells in fibrosis. Moreover, the heterogeneity of fibroblast properties, multiplicity of regulatory pathways and diversity of origin for myofibroblasts may underpin clinical diversity in SSc, and provide novel avenues for targeted therapy.


Assuntos
Fibroblastos/patologia , Escleroderma Sistêmico/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/metabolismo , Humanos , Escleroderma Sistêmico/metabolismo
11.
Am J Pathol ; 183(2): 470-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23759512

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease of high unmet medical need. Although bromodomain (Brd) and extra terminal domain isoforms have recently been implicated in mediating inflammatory and oncologic indications, their roles in lung fibrosis have not been comprehensively assessed. We investigated the role of Brd on the profibrotic responses of lung fibroblasts (LFs) in patients with rapidly progressing IPF and a mouse bleomycin model of lung fibrosis. The enhanced migration, proliferation, and IL-6 release observed in LFs from patients with rapidly progressing IPF are attenuated by pharmacologic inhibition of Brd4. These changes are accompanied by enhanced histone H4 lysine5 acetylation and association of Brd4 with genes involved in the profibrotic responses in IPF LFs as demonstrated using chromatin immunoprecipitation and quantitative PCR. Oral administration of 200 mg/kg per day Brd4 inhibitor JQ1 in a therapeutic dosing regimen substantially attenuated lung fibrosis induced by bleomycin in C57BL/6 mice. In conclusion, this study shows that the Brd4 inhibitor JQ1, administered in a therapeutic dosage, is capable of inhibiting the profibrotic effects of IPF LFs and attenuates bleomycin-induced lung fibrosis in mice. These results suggest that Brd4 inhibitors may represent a novel therapy for the treatment of rapidly progressing IPF.


Assuntos
Fibroblastos/patologia , Fibrose Pulmonar Idiopática/patologia , Proteínas Nucleares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Acetilação , Animais , Anti-Inflamatórios/farmacologia , Antibióticos Antineoplásicos/toxicidade , Azepinas/farmacologia , Bleomicina/toxicidade , Proteínas de Ciclo Celular , Movimento Celular/fisiologia , Proliferação de Células , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Substâncias de Crescimento/metabolismo , Histonas/metabolismo , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pele/citologia , Triazóis/farmacologia
12.
W V Med J ; 109(2): 16-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23600100

RESUMO

Despite known dangers of smoking, a majority of pregnant women continue to smoke or relapse following delivery. West Virginia women have high unmet needs for smoking cessation, and the prenatal period presents a critical and unique opportunity for education and quitting assistance. West Virginia's Fax-to-Quit program uses provider-faxed referrals to the Quitline to engage smokers and connect them with cessation services. A 12-month feasibility evaluation of this Fax-to-Quit program for pregnant women was conducted. In February 2009, providers and staff from three OB/GYN clinics in three adjoining West Virginia counties were recruited. All participating sites received an intensive half-day training program. Adult pregnant smokers receiving prenatal care in these OB/GYN clinic sites were eligible to participate. Recruitment sites screened pregnant women for smoking; assessed readiness-to-quit; and enrolled consenting participants in the Fax-to-Quit Program. The Quitline measured cessation attempts with six-month follow-up of enrolled participants. Between March-December 2009, 58 referrals were made at these OB/GYN clinic sites, with 15 women (25.9%) enrolling in Quitline services. These enrolled women account for approximately one-quarter of calls from pregnant smokers to the West Virginia Quitline in the past 12 months. Contact, communication, and cooperation with office staff were relevant and important to successful project implementation. Findings indicate that Fax-to-Quit is feasible to engage providers and pregnant smokers with the West Virginia Quitline. Successful referrals and enrollment demonstrate Fax-to-Quit may support cessation by increasing Quitline use and connecting pregnant women who smoke with quitting services through provider-faxed referrals to the West Virginia Quitline.


Assuntos
Linhas Diretas , Gestantes , Cuidado Pré-Natal/métodos , Encaminhamento e Consulta , Abandono do Hábito de Fumar/métodos , Adolescente , Adulto , Estudos de Viabilidade , Feminino , Humanos , Satisfação do Paciente , Projetos Piloto , Gravidez , Telefac-Símile , West Virginia , Adulto Jovem
13.
Pharmacol Ther ; 135(3): 279-91, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22722064

RESUMO

Dysregulation of the transforming growth factor ß (TGFß) pathway has been implicated to underlie a number of disease indications including chronic lung disorders such as asthma, chronic obstructive pulmonary disease (COPD), interstitial pneumonias, and pulmonary arterial hypertension (PAH). Consequently, the pharmaceutical industry has devoted significant resources in the pursuit of TGFß pathway inhibitors that target the cognate type I and II receptors and respective ligands. The progress of these approaches has been painfully slow, due in part to dose-limiting safety issues that result from the antagonism of a pathway that is responsible for regulating many fundamental biological processes including immune surveillance and cardiovascular responses. These disappointments have led many in the field to conclude that modulating the TGFß pathway for chronic indications with a sufficient safety window using conventional approaches may be extremely difficult to achieve. Here we review the rationale and limitations of the use of TGFß pathway inhibitors in chronic lung disorders and the possibility of targeting TGFß superfamily ligand accessory proteins to allow rheostatic regulation of signaling to achieve efficacy while maintaining a sufficient therapeutic index.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/uso terapêutico , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Pneumopatias/tratamento farmacológico , Terapia de Alvo Molecular , Receptores de Fatores de Crescimento Transformadores beta/agonistas , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Proteínas da Superfamília de TGF-beta/agonistas , Proteínas da Superfamília de TGF-beta/antagonistas & inibidores , Animais , Doença Crônica , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Pneumopatias/fisiopatologia , Modelos Biológicos , Terapia de Alvo Molecular/métodos , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas da Superfamília de TGF-beta/fisiologia
14.
Am J Physiol Lung Cell Mol Physiol ; 302(6): L604-15, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22227206

RESUMO

Mutations in the bone morphogenetic protein (BMP) type II receptor (BMPR-II) underlie most cases of heritable pulmonary arterial hypertension (HPAH) and a significant proportion of sporadic cases. Pulmonary artery smooth muscle cells (PASMCs) from patients with pulmonary arterial hypertension (PAH) not only exhibit attenuated growth suppression by BMPs, but an abnormal mitogenic response to transforming growth factor (TGF)-ß1. We sought to define the mechanism underlying this loss of the antiproliferative effects of TGF-ß1 in BMPR-II-deficient PASMCs. The effect of TGF-ß1 on PASMC proliferation was characterized in three different models of BMPR-II dysfunction: 1) HPAH PASMCs, 2) Bmpr2(+/-) mouse PASMCs, and 3) control human PASMCs transfected with BMPR-II small interfering RNA. BMPR-II reduction consistently conferred insensitivity to growth inhibition by TGF-ß1. This was not associated with altered canonical TGF-ß1/Smad signaling but was associated with a secreted factor. Microarray analysis revealed that the transcriptional responses to TGF-ß1 differed between control and HPAH PASMCs, particularly regarding genes associated with interleukins and inflammation. HPAH PASMCs exhibited enhanced IL-6 and IL-8 induction by TGF-ß1, an effect reversed by NF-κB inhibition. Moreover, neutralizing antibodies to IL-6 or IL-8 restored the antiproliferative effect of TGF-ß1 in HPAH PASMCs. This study establishes that BMPR-II deficiency leads to failed growth suppression by TGF-ß1 in PASMCs. This effect is Smad-independent but is associated with inappropriately altered NF-κB signaling and enhanced induction of IL-6 and IL-8 expression. Our study provides a rationale to test anti-interleukin therapies as an intervention to neutralize this inappropriate response and restore the antiproliferative response to TGF-ß1.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/deficiência , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Processos de Crescimento Celular/fisiologia , Células Cultivadas , Hipertensão Pulmonar Primária Familiar , Expressão Gênica , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Interleucina-8/antagonistas & inibidores , Interleucina-8/genética , Camundongos , NF-kappa B/metabolismo , RNA Interferente Pequeno/genética , Proteínas Smad/metabolismo , Transfecção/métodos
15.
Blood ; 118(17): 4750-8, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21900197

RESUMO

Previous studies from our group have demonstrated that bone morphogenetic protein receptor-II (BMPR-II), expressed on pulmonary artery endothelial cells, imparts profound anti-inflammatory effects by regulating the release of proinflammatory cytokines and promoting barrier function by suppressing the transmigration of leukocytes into the pulmonary vessel wall. Here we demonstrate that, in mice with endothelial-specific loss of BMPR-II expression (L1Cre(+);Bmpr2(f/f)), reduction in barrier function and the resultant pulmonary hypertension observed in vivo are the result of increased leukocyte recruitment through increased CXCR1/2 signaling. Loss of endothelial expressed BMPR-II leads to elevated plasma levels of a wide range of soluble mediators important in regulating leukocyte migration and extravasation, including the CXCR1/2 ligand, KC. Treatment of L1Cre(+);Bmpr2(f/f) mice with the CXCR1/2 antagonist SCH527123 inhibits leukocyte transmigration into lung and subsequently reverses the pulmonary hypertension. Our data have uncovered a previously unrecognized regulatory function of BMPR-II, which acts to regulate the expression of CXCR2 on endothelial cells, suggesting that increased CXCR2 signaling may also be a feature of the human pathology and that CXCR1/2 pathway antagonists may represent a novel therapeutic approach for treating pulmonary hypertension because of defects in BMPR-II expression.


Assuntos
Benzamidas/uso terapêutico , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Quimiotaxia de Leucócito/efeitos dos fármacos , Quimiotaxia de Leucócito/genética , Ciclobutanos/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Benzamidas/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/fisiologia , Células Cultivadas , Ciclobutanos/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Regulação para Baixo/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Deleção de Genes , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Artéria Pulmonar/imunologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia
16.
Am J Respir Crit Care Med ; 184(10): 1171-82, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21868504

RESUMO

RATIONALE: The complex pathologies associated with severe pulmonary arterial hypertension (PAH) in humans have been a challenge to reproduce in mice due to the subtle phenotype displayed to PAH stimuli. OBJECTIVES: Here we aim to develop a novel murine model of PAH that recapitulates more of the pathologic processes, such as complex vascular remodeling and cardiac indices, that are not characteristic of alternative mouse models. METHODS: Inhibition of vascular endothelial growth factor receptor (VEGFR) with SU5416 combined with 3 weeks of chronic hypoxia was investigated. Hemodynamics, cardiac function, histological assessment of pulmonary vasculature, and molecular pathway analysis gauged the extent of PAH pathology development. MEASUREMENTS AND MAIN RESULTS: The combination of VEGFR inhibition with chronic hypoxia profoundly exacerbated all measures of PAH-like pathology when compared with hypoxia alone (> 45 mm Hg right ventricular pressure, > 0.35 right ventricular hypertrophy). The changes in pulmonary vascular remodeling in response to hypoxia were further enhanced on SU5416 treatment. Furthermore, hypoxia/SU5416 treatment steadily decreased cardiac output, indicating incipient heart failure. Molecular analysis showed a dysregulated transforming growth factor-ß/bone morphogenetic protein/Smad axis in SU5416- and/or hypoxia-treated mice as well as augmented induction of IL-6 and Hif-1α levels. These changes were observed in accordance with up-regulation of Tph1 and Pdgfr gene transcripts as well as a rise in platelet-rich serotonin. Biomarker analysis in response to VEGFR inhibition and/or hypoxia revealed distinct signatures that correlate with cytokine profiles of patients with idiopathic PAH. CONCLUSIONS: These data describe a novel murine model of PAH, which displays many of the hallmarks of the human disease, thus opening new avenues of investigation to better understand PAH pathophysiology.


Assuntos
Modelos Animais de Doenças , Hipertensão Pulmonar/fisiopatologia , Doença Aguda , Animais , Western Blotting , Citocinas/sangue , Ecocardiografia , Feminino , Imunofluorescência , Perfilação da Expressão Gênica , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia/complicações , Indóis/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirróis/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
17.
J Cell Commun Signal ; 5(3): 173-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21769684

RESUMO

The ability of TGFß1 to act as a potent pro-fibrotic mediator is well established, potently inducing the expression of fibrogenic genes including type I collagen (COL1A2) and CCN2. Previously we have shown elevated expression of the TGFß accessory receptor, endoglin on Systemic Sclerosis (SSc) dermal fibroblasts. Here we sought to assess the cell surface expression of the TGFß receptor complex on SSc dermal fibroblasts (SDF), and investigate their role in maintaining the elevated expression of CCN2. SDF exhibited elevated expression of the TGFß accessory receptors betaglycan/TGFßRIII and endoglin, but not type I or type II receptors. To determine the effect of altered receptor repertoire on TGFß responses, we investigated the effect of exogenous TGFß on expression of two pro-fibrotic genes. SDF exhibited higher basal expression of COL1A2 and CCN2 compared to healthy controls. TGFß induced a marked increase in the expression of these genes in normal dermal fibroblasts, whereas SDF exhibited only a modest increase. We next sought to determine if higher basal expression in SDF was a result of autocrine expression of TGFß. Surprisingly basal expression was not affected by a pan-neutralizing TGFß antibody. To explore if altered accessory receptor expression alone could account for these changes, we determined their effects on CCN2 promoter activity. Endoglin inhibited CCN2 promoter activity in response to TGFß. TGFßRIII alone or in combination with endoglin was sufficient to enhance basal CCN2 promoter activity. Thus TGFß accessory receptors may play a significant role in the altered expression of fibrogenic genes in SDF.

18.
Blood ; 117(1): 333-41, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20724539

RESUMO

Mutations in bone morphogenetic protein receptor II (BMPR-II) underlie most heritable cases of pulmonary arterial hypertension (PAH). However, less than half the individuals who harbor mutations develop the disease. Interestingly, heterozygous null BMPR-II mice fail to develop PAH unless an additional inflammatory insult is applied, suggesting that BMPR-II plays a fundamental role in dampening inflammatory signals in the pulmonary vasculature. Using static- and flow-based in vitro systems, we demonstrate that BMPR-II maintains the barrier function of the pulmonary artery endothelial monolayer suppressing leukocyte transmigration. Similar findings were also observed in vivo using a murine model with loss of endothelial BMPR-II expression. In vitro, the enhanced transmigration of leukocytes after tumor necrosis factor α or transforming growth factor ß1 stimulation was CXCR2 dependent. Our data define how loss of BMPR-II in the endothelial layer of the pulmonary vasculature could lead to a heightened susceptibility to inflammation by promoting the extravasation of leukocytes into the pulmonary artery wall. We speculate that this may be a key mechanism involved in the initiation of the disease in heritable PAH that results from defects in BMPR-II expression.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/fisiologia , Endotélio Vascular/metabolismo , Pulmão/metabolismo , Artéria Pulmonar/metabolismo , Animais , Western Blotting , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/antagonistas & inibidores , Movimento Celular , Células Cultivadas , Citocinas/metabolismo , Endotélio Vascular/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Humanos , Integrases/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Pulmão/irrigação sanguínea , Camundongos , Camundongos Knockout , Peroxidase/metabolismo , Artéria Pulmonar/efeitos dos fármacos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta1/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
19.
Circulation ; 122(9): 920-7, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20713898

RESUMO

BACKGROUND: Inflammation is a feature of pulmonary arterial hypertension (PAH), and increased circulating levels of cytokines are reported in patients with PAH. However, to date, no information exists on the significance of elevated cytokines or their potential as biomarkers. We sought to determine the levels of a range of cytokines in PAH and to examine their impact on survival and relationship to hemodynamic indexes. METHODS AND RESULTS: We measured levels of serum cytokines (tumor necrosis factor-alpha, interferon-gamma and interleukin-1beta, -2, -4, -5, -6, -8, -10, -12p70, and -13) using ELISAs in idiopathic and heritable PAH patients (n=60). Concurrent clinical data included hemodynamics, 6-minute walk distance, and survival time from sampling to death or transplantation. Healthy volunteers served as control subjects (n=21). PAH patients had significantly higher levels of interleukin-1beta, -2, -4, -6, -8, -10, and -12p70 and tumor necrosis factor-alpha compared with healthy control subjects. Kaplan-Meier analysis showed that levels of interleukin-6, 8, 10, and 12p70 predicted survival in patients. For example, 5-year survival with interleukin-6 levels of >9 pg/mL was 30% compared with 63% for patients with levels < or = 9 pg/mL (P=0.008). In this PAH cohort, cytokine levels were superior to traditional markers of prognosis such as 6-minute walk distance and hemodynamics. CONCLUSIONS: This study illustrates dysregulation of a broad range of inflammatory mediators in idiopathic and familial PAH and demonstrates that cytokine levels have a previously unrecognized impact on patient survival. They may prove to be useful biomarkers and provide insight into the contribution of inflammation in PAH.


Assuntos
Biomarcadores/sangue , Citocinas/sangue , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/mortalidade , Inflamação/diagnóstico , Inflamação/mortalidade , Adulto , Idoso , Pressão Sanguínea , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Feminino , Predisposição Genética para Doença , Humanos , Hipertensão Pulmonar/genética , Inflamação/genética , Mediadores da Inflamação/sangue , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Análise de Sobrevida , Resistência Vascular
20.
Arthritis Rheum ; 60(7): 2142-55, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19565505

RESUMO

OBJECTIVE: Connective tissue growth factor (CTGF; CCN2) is overexpressed in systemic sclerosis (SSc) and has been hypothesized to be a key mediator of the pulmonary fibrosis frequently observed in this disease. CTGF is induced by transforming growth factor beta (TGFbeta) and is a mediator of some profibrotic effects of TGFbeta in vitro. This study was undertaken to investigate the role of CTGF in enhanced expression of type I collagen in bleomycin-induced lung fibrosis, and to delineate the mechanisms of action underlying the effects of CTGF on Col1a2 (collagen gene type I alpha2) in this mouse model and in human pulmonary fibroblasts. METHODS: Transgenic mice that were carrying luciferase and beta-galactosidase reporter genes driven by the Col1a2 enhancer/promoter and the CTGF promoter, respectively, were injected with bleomycin to induce lung fibrosis (or saline as control), and the extracted pulmonary fibroblasts were incubated with CTGF blocking agents. In vitro, transient transfection, promoter/reporter constructs, and electrophoretic mobility shift assays were used to determine the mechanisms of action of CTGF in pulmonary fibroblasts. RESULTS: In the mouse lung tissue, CTGF expression and promoter activity peaked 1 week after bleomycin challenge, whereas type I collagen expression and Col1a2 promoter activity peaked 2 weeks postchallenge. Fibroblasts isolated from the mouse lungs 14 days after bleomycin treatment retained a profibrotic expression pattern, characterized by greatly elevated levels of type I collagen and CTGF protein and increased promoter activity. In vitro, inhibition of CTGF by specific small interfering RNA and neutralizing antibodies reduced the collagen protein expression and Col1a2 promoter activity. Moreover, in vivo, anti-CTGF antibodies applied after bleomycin challenge significantly reduced the Col1a2 promoter activity by approximately 25%. The enhanced Col1a2 promoter activity in fibroblasts from bleomycin-treated lungs was partly dependent on Smad signaling, whereas CTGF acted on the Col1a2 promoter by a mechanism that was independent of the Smad binding site, but was, instead, dependent on the ERK-1/2 and JNK MAPK pathways. The CTGF effect was mapped to the proximal promoter region surrounding the inverted CCAAT box, possibly involving CREB and c-Jun. In human lung fibroblasts, the human COL1A2 promoter responded in a similar manner, and the mechanisms of action also involved ERK-1/2 and JNK signaling. CONCLUSION: Our results clearly define a direct profibrotic effect of CTGF and demonstrate its contribution to lung fibrosis through transcriptional activation of Col1a2. Blocking strategies revealed the signaling mechanisms involved. These findings show CTGF to be a rational target for therapy in fibrotic diseases such as SSc.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fibroblastos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fibrose Pulmonar/metabolismo , Transcrição Gênica/fisiologia , Animais , Sequência de Bases , Bleomicina/efeitos adversos , Células Cultivadas , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Fator de Crescimento do Tecido Conjuntivo/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...