Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 535(7612): 416-9, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27309809

RESUMO

Ongoing declines in the structure and function of the world's coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them3. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the 'outliers'­places where ecosystems are substantially better ('bright spots') or worse ('dark spots') than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine6. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries governance, particularly aspects such as participation and property rights, could facilitate innovative conservation actions that help communities defy expectations of global reef degradation.


Assuntos
Conservação dos Recursos Naturais/métodos , Recifes de Corais , Ecossistema , Geografia , Animais , Teorema de Bayes , Biomassa , Conservação dos Recursos Naturais/legislação & jurisprudência , Pesqueiros/legislação & jurisprudência , Peixes , Fatores Socioeconômicos , Meio Selvagem
2.
Mar Biol ; 157(12): 2739-2750, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-24391253

RESUMO

Large animals are severely depleted in many ecosystems, yet we are only beginning to understand the ecological implications of their loss. To empirically measure the short-term effects of removing large animals from an ocean ecosystem, we used exclosures to remove large fish from a near-pristine coral reef at Palmyra Atoll, Central Pacific Ocean. We identified a range of effects that followed from the removal of these large fish. These effects were revealed within weeks of their removal. Removing large fish (1) altered the behavior of prey fish; (2) reduced rates of herbivory on certain species of reef algae; (3) had both direct positive (reduced mortality of coral recruits) and indirect negative (through reduced grazing pressure on competitive algae) impacts on recruiting corals; and (4) tended to decrease abundances of small mobile benthic invertebrates. Results of this kind help advance our understanding of the ecological importance of large animals in ecosystems.

3.
Ecol Appl ; 18(7): 1689-701, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18839764

RESUMO

Habitat maps are frequently invoked as surrogates of biodiversity to aid the design of networks of marine reserves. Maps are used to maximize habitat heterogeneity in reserves because this is likely to maximize the number of species protected. However, the technique's efficacy is limited by intra-habitat variability in the species present and their abundances. Although communities are expected to vary among patches of the same habitat, this variability is poorly documented and rarely incorporated into reserve planning. To examine intra-habitat variability in coral-reef fishes, we generated a data set from eight tropical coastal habitats and six islands in the Bahamian archipelago using underwater visual censuses. Firstly, we provide further support for habitat heterogeneity as a surrogate of biodiversity as each predefined habitat type supported a distinct assemblage of fishes. Intra-habitat variability in fish community structure at scales of hundreds of kilometers (among islands) was significant in at least 75% of the habitats studied, depending on whether presence/absence, density, or biomass data were used. Intra-habitat variability was positively correlated with the mean number of species in that habitat when density and biomass data were used. Such relationships provide a proxy for the assessment of intra-habitat variability when detailed quantitative data are scarce. Intra-habitat variability was examined in more detail for one habitat (forereefs visually dominated by Montastraea corals). Variability in community structure among islands was driven by small, demersal families (e.g., territorial pomacentrid and labrid fishes). Finally, we examined the ecological and economic significance of intra-habitat variability in fish assemblages on Montastraea reefs by identifying how this variability affects the composition and abundances of fishes in different functional groups, the key ecosystem process of parrotfish grazing, and the ecosystem service of value of commercially important finfish. There were significant differences in a range of functional groups and grazing, but not fisheries value. Variability at the scale of tens of kilometers (among reefs around an island) was less than that among islands. Caribbean marine reserves should be replicated at scales of hundreds of kilometers, particularly for species-rich habitats, to capture important intra-habitat variability in community structure, function, and an ecosystem process.


Assuntos
Pesqueiros/economia , Peixes/fisiologia , Clima Tropical , Animais , Ecossistema , Geografia , Oceanos e Mares
4.
Conserv Biol ; 22(4): 941-51, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18477024

RESUMO

Habitat maps are often the core spatially consistent data set on which marine reserve networks are designed, but their efficacy as surrogates for species richness and applicability to other conservation measures is poorly understood. Combining an analysis of field survey data, literature review, and expert assessment by a multidisciplinary working group, we examined the degree to which Caribbean coastal habitats provide useful planning information on 4 conservation measures: species richness, the ecological functions of fish species, ecosystem processes, and ecosystem services. Approximately one-quarter to one-third of benthic invertebrate species and fish species (disaggregated by life phase; hereafter fish species) occurred in a single habitat, and Montastraea-dominated forereefs consistently had the highest richness of all species, processes, and services. All 11 habitats were needed to represent all 277 fish species in the seascape, although reducing the conservation target to 95% of species approximately halved the number of habitats required to ensure representation. Species accumulation indices (SAIs) were used to compare the efficacy of surrogates and revealed that fish species were a more appropriate surrogate of benthic species (SAI = 71%) than benthic species were for fishes (SAI = 42%). Species of reef fishes were also distributed more widely across the seascape than invertebrates and therefore their use as a surrogate simultaneously included mangroves, sea grass, and coral reef habitats. Functional classes of fishes served as effective surrogates of fish and benthic species which, given their ease to survey, makes them a particularly useful measure for conservation planning. Ecosystem processes and services exhibited great redundancy among habitats and were ineffective as surrogates of species. Therefore, processes and services in this case were generally unsuitable for a complementarity-based approach to reserve design. In contrast, the representation of species or functional classes ensured inclusion of all processes and services in the reserve network.


Assuntos
Antozoários/fisiologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental/métodos , Animais , Pesqueiros , Peixes , Agricultura Florestal , Atividades Humanas , Plantas , Dinâmica Populacional
5.
Proc Natl Acad Sci U S A ; 104(20): 8362-7, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17488824

RESUMO

Reduced fishing pressure and weak predator-prey interactions within marine reserves can create trophic cascades that increase the number of grazing fishes and reduce the coverage of macroalgae on coral reefs. Here, we show that the impacts of reserves extend beyond trophic cascades and enhance the process of coral recruitment. Increased fish grazing, primarily driven by reduced fishing, was strongly negatively correlated with macroalgal cover and resulted in a 2-fold increase in the density of coral recruits within a Bahamian reef system. Our conclusions are robust because four alternative hypotheses that may generate a spurious correlation between grazing and coral recruitment were tested and rejected. Grazing appears to influence the density and community structure of coral recruits, but no detectable influence was found on the overall size-frequency distribution, community structure, or cover of corals. We interpret this absence of pattern in the adult coral community as symptomatic of the impact of a recent disturbance event that masks the recovery trajectories of individual reefs. Marine reserves are not a panacea for conservation but can facilitate the recovery of corals from disturbance and may help sustain the biodiversity of organisms that depend on a complex three-dimensional coral habitat.


Assuntos
Antozoários/fisiologia , Conservação dos Recursos Naturais , Cadeia Alimentar , Animais , Biodiversidade , Eucariotos/fisiologia , Peixes/fisiologia , Larva , Modelos Biológicos , Comportamento Predatório/fisiologia
6.
Adv Mar Biol ; 50: 57-189, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16782451

RESUMO

Caribbean coral reef habitats, seagrass beds and mangroves provide important goods and services both individually and through functional linkages. A range of anthropogenic factors are threatening the ecological and economic importance of these habitats and it is vital to understand how ecosystem processes vary across seascapes. A greater understanding of processes will facilitate further insight into the effects of disturbances and assist with assessing management options. Despite the need to study processes across whole seascapes, few spatially explicit ecosystem-scale assessments exist. We review the empirical literature to examine the role of different habitat types for a range of processes. The importance of each of 10 generic habitats to each process is defined as its "functional value" (none, low, medium or high), quantitatively derived from published data wherever possible and summarised in a single figure. This summary represents the first time the importance of habitats across an entire Caribbean seascape has been assessed for a range of processes. Furthermore, we review the susceptibility of each habitat to disturbances to investigate spatial patterns that might affect functional values. Habitat types are considered at the scale discriminated by remotely-sensed imagery and we envisage that functional values can be combined with habitat maps to provide spatially explicit information on processes across ecosystems. We provide examples of mapping the functional values of habitats for populations of three commercially important species. The resulting data layers were then used to generate seascape-scale assessments of "hot spots" of functional value that might be considered priorities for conservation. We also provide an example of how the literature reviewed here can be used to parameterise a habitat-specific model investigating reef resilience under different scenarios of herbivory. Finally, we use multidimensional scaling to provide a basic analysis of the overall functional roles of different habitats. The resulting ordination suggests that each habitat has a unique suite of functional values and, potentially, a distinct role within the ecosystem. This review shows that further data are required for many habitat types and processes, particularly forereef and escarpment habitats on reefs and for seagrass beds and mangroves. Furthermore, many data were collected prior to the regional mass mortality of Diadema and Acropora, and subsequent changes to benthic communities have, in many cases, altered a habitat's functional value, hindering the use of these data for parameterising maps and models. Similarly, few data exist on how functional values change when environmental parameters, such as water clarity, are altered by natural or anthropogenic influences or the effects of a habitat's spatial context within the seascape. Despite these limitations, sufficient data are available to construct maps and models to better understand tropical marine ecosystem processes and assist more effective mitigation of threats that alter habitats and their functional values.


Assuntos
Alismatales/fisiologia , Antozoários/fisiologia , Ecossistema , Meio Ambiente , Peixes/fisiologia , Rhizophoraceae/fisiologia , Algoritmos , Animais , Biodiversidade , Região do Caribe , Comportamento Alimentar/fisiologia , Peixes/classificação , Gastrópodes/fisiologia , Sedimentos Geológicos , Modelos Biológicos , Fixação de Nitrogênio , Palinuridae/fisiologia , Fotossíntese , Densidade Demográfica , Clima Tropical , Movimentos da Água
7.
Science ; 311(5757): 98-101, 2006 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-16400152

RESUMO

Since the mass mortality of the urchin Diadema antillarum in 1983, parrotfishes have become the dominant grazer on Caribbean reefs. The grazing capacity of these fishes could be impaired if marine reserves achieve their long-term goal of restoring large consumers, several of which prey on parrotfishes. Here we compare the negative impacts of enhanced predation with the positive impacts of reduced fishing mortality on parrotfishes inside reserves. Because large-bodied parrotfishes escape the risk of predation from a large piscivore (the Nassau grouper), the predation effect reduced grazing by only 4 to 8%. This impact was overwhelmed by the increase in density of large parrotfishes, resulting in a net doubling of grazing. Increased grazing caused a fourfold reduction in the cover of macroalgae, which, because they are the principal competitors of corals, highlights the potential importance of reserves for coral reef resilience.


Assuntos
Antozoários , Conservação dos Recursos Naturais , Ecossistema , Peixes , Perciformes , Animais , Antozoários/crescimento & desenvolvimento , Bahamas , Biomassa , Tamanho Corporal , Pesqueiros , Perciformes/anatomia & histologia , Densidade Demográfica , Dinâmica Populacional , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...