Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831699

RESUMO

Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - optically pumped magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.


Assuntos
Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Magnetoencefalografia/instrumentação , Criança , Adolescente , Adulto , Adulto Jovem , Masculino , Feminino , Pré-Escolar , Ritmo beta/fisiologia , Encéfalo/fisiologia
2.
Sensors (Basel) ; 24(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38894294

RESUMO

Magnetoencephalography (MEG) non-invasively provides important information about human brain electrophysiology. The growing use of optically pumped magnetometers (OPM) for MEG, as opposed to fixed arrays of cryogenic sensors, has opened the door for innovation in system design and use cases. For example, cryogenic MEG systems are housed in large, shielded rooms to provide sufficient space for the system dewar. Here, we investigate the performance of OPM recordings inside of a cylindrical shield with a 1 × 2 m2 footprint. The efficacy of shielding was measured in terms of field attenuation and isotropy, and the value of post hoc noise reduction algorithms was also investigated. Localization accuracy was quantified for 104 OPM sensors mounted on a fixed helmet array based on simulations and recordings from a bespoke current dipole phantom. Passive shielding attenuated the vector field magnitude to 50.0 nT at direct current (DC), to 16.7 pT/√Hz at power line, and to 71 fT/√Hz (median) in the 10-200 Hz range. Post hoc noise reduction provided an additional 5-15 dB attenuation. Substantial field isotropy remained in the volume encompassing the sensor array. The consistency of the isotropy over months suggests that a field nulling solution could be readily applied. A current dipole phantom generating source activity at an appropriate magnitude for the human brain generated field fluctuations on the order of 0.5-1 pT. Phantom signals were localized with 3 mm localization accuracy, and no significant bias in localization was observed, which is in line with performance for cryogenic and OPM MEG systems. This validation of the performance of a small footprint MEG system opens the door for lower-cost MEG installations in terms of raw materials and facility space, as well as mobile imaging systems (e.g., truck-based). Such implementations are relevant for global adoption of MEG outside of highly resourced research and clinical institutions.

3.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38558964

RESUMO

Magnetoencephalography (MEG) measures brain function via assessment of magnetic fields generated by neural currents. Conventional MEG uses superconducting sensors, which place significant limitations on performance, practicality, and deployment; however, the field has been revolutionised in recent years by the introduction of optically-pumped-magnetometers (OPMs). OPMs enable measurement of the MEG signal without cryogenics, and consequently the conception of 'OPM-MEG' systems which ostensibly allow increased sensitivity and resolution, lifespan compliance, free subject movement, and lower cost. However, OPM-MEG remains in its infancy with limitations on both sensor and system design. Here, we report a new OPM-MEG design with miniaturised and integrated electronic control, a high level of portability, and improved sensor dynamic range (arguably the biggest limitation of existing instrumentation). We show that this system produces equivalent measures when compared to an established instrument; specifically, when measuring task-induced beta-band, gamma-band and evoked neuro-electrical responses, source localisations from the two systems were highly comparable and temporal correlation was >0.7 at the individual level and >0.9 for groups. Using an electromagnetic phantom, we demonstrate improved dynamic range by running the system in background fields up to 8 nT. We show that the system is effective in gathering data during free movement (including a sitting-to-standing paradigm) and that it is compatible with simultaneous electroencephalography (EEG - the clinical standard). Finally, we demonstrate portability by moving the system between two laboratories. Overall, our new system is shown to be a significant step forward for OPM-MEG technology and offers an attractive platform for next generation functional medical imaging.

4.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38260246

RESUMO

Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - Optically Pumped Magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.

6.
Front Neurosci ; 17: 1284262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089970

RESUMO

Cryogenic magnetoencephalography (MEG) enhances the presurgical assessment of refractory focal epilepsy (RFE). Optically pumped magnetometers (OPMs) are cryogen-free sensors that enable on-scalp MEG recordings. Here, we investigate the application of tri-axial OPMs [87Rb (Rb-OPM) and 4He gas (He-OPM)] for the detection of interictal epileptiform discharges (IEDs). IEDs were recorded simultaneously with 4 tri-axial Rb- and 4 tri-axial He-OPMs in a child with RFE. IEDs were identified visually, isolated from magnetic background noise using independent component analysis (ICA) and were studied following their optimal magnetic field orientation thanks to virtual sensors. Most IEDs (>1,000) were detectable by both He- and Rb-OPM recordings. IEDs were isolated by ICA and the resulting magnetic field oriented mostly tangential to the scalp in Rb-OPMs and radial in He-OPMs. Likely due to differences in sensor locations, the IED amplitude was higher with Rb-OPMs. This case study shows comparable ability of Rb-OPMs and He-OPMs to detect IEDs and the substantial benefits of triaxial OPMs to detect IEDs from different sensor locations. Tri-axial OPMs allow to maximize spatial brain sampling for IEDs detection with a limited number of sensors.

9.
Sensors (Basel) ; 23(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37514831

RESUMO

The signal space separation (SSS) method is routinely employed in the analysis of multichannel magnetic field recordings (such as magnetoencephalography (MEG) data). In the SSS method, signal vectors are posed as a multipole expansion of the magnetic field, allowing contributions from sources internal and external to a sensor array to be separated via computation of the pseudo-inverse of a matrix of the basis vectors. Although powerful, the standard implementation of the SSS method on MEG systems based on optically pumped magnetometers (OPMs) is unstable due to the approximate parity of the required number of dimensions of the SSS basis and the number of channels in the data. Here we exploit the hierarchical nature of the multipole expansion to perform a stable, iterative implementation of the SSS method. We describe the method and investigate its performance via a simulation study on a 192-channel OPM-MEG helmet. We assess performance for different levels of truncation of the SSS basis and a varying number of iterations. Results show that the iterative method provides stable performance, with a clear separation of internal and external sources.

10.
Sensors (Basel) ; 23(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37420622

RESUMO

The evolution of human cognitive function is reliant on complex social interactions which form the behavioural foundation of who we are. These social capacities are subject to dramatic change in disease and injury; yet their supporting neural substrates remain poorly understood. Hyperscanning employs functional neuroimaging to simultaneously assess brain activity in two individuals and offers the best means to understand the neural basis of social interaction. However, present technologies are limited, either by poor performance (low spatial/temporal precision) or an unnatural scanning environment (claustrophobic scanners, with interactions via video). Here, we describe hyperscanning using wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs). We demonstrate our approach by simultaneously measuring brain activity in two subjects undertaking two separate tasks-an interactive touching task and a ball game. Despite large and unpredictable subject motion, sensorimotor brain activity was delineated clearly, and the correlation of the envelope of neuronal oscillations between the two subjects was demonstrated. Our results show that unlike existing modalities, OPM-MEG combines high-fidelity data acquisition and a naturalistic setting and thus presents significant potential to investigate neural correlates of social interaction.


Assuntos
Magnetoencefalografia , Dispositivos Eletrônicos Vestíveis , Humanos , Magnetoencefalografia/métodos , Neuroimagem Funcional , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia
11.
Neuroimage ; 274: 120157, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37149237

RESUMO

The ability to collect high-quality neuroimaging data during ambulatory participant movement would enable a wealth of neuroscientific paradigms. Wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) has the potential to allow participant movement during a scan. However, the strict zero magnetic field requirement of OPMs means that systems must be operated inside a magnetically shielded room (MSR) and also require active shielding using electromagnetic coils to cancel residual fields and field changes (due to external sources and sensor movements) that would otherwise prevent accurate neuronal source reconstructions. Existing active shielding systems only compensate fields over small, fixed regions and do not allow ambulatory movement. Here we describe the matrix coil, a new type of active shielding system for OPM-MEG which is formed from 48 square unit coils arranged on two planes which can compensate magnetic fields in regions that can be flexibly placed between the planes. Through the integration of optical tracking with OPM data acquisition, field changes induced by participant movement are cancelled with low latency (25 ms). High-quality MEG source data were collected despite the presence of large (65 cm translations and 270° rotations) ambulatory participant movements.


Assuntos
Magnetoencefalografia , Dispositivos Eletrônicos Vestíveis , Humanos , Magnetoencefalografia/métodos , Movimento , Campos Magnéticos , Fenômenos Eletromagnéticos , Encéfalo/fisiologia
12.
Sci Rep ; 13(1): 4623, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944674

RESUMO

Magneto- and electroencephalography (MEG/EEG) are important techniques for the diagnosis and pre-surgical evaluation of epilepsy. Yet, in current cryogen-based MEG systems the sensors are offset from the scalp, which limits the signal-to-noise ratio (SNR) and thereby the sensitivity to activity from deep structures such as the hippocampus. This effect is amplified in children, for whom adult-sized fixed-helmet systems are typically too big. Moreover, ictal recordings with fixed-helmet systems are problematic because of limited movement tolerance and/or logistical considerations. Optically Pumped Magnetometers (OPMs) can be placed directly on the scalp, thereby improving SNR and enabling recordings during seizures. We aimed to demonstrate the performance of OPMs in a clinical population. Seven patients with challenging cases of epilepsy underwent MEG recordings using a 12-channel OPM-system and a 306-channel cryogen-based whole-head system: three adults with known deep or weak (low SNR) sources of interictal epileptiform discharges (IEDs), along with three children with focal epilepsy and one adult with frequent seizures. The consistency of the recorded IEDs across the two systems was assessed. In one patient the OPMs detected IEDs that were not found with the SQUID-system, and in two patients no IEDs were found with either system. For the other patients the OPM data were remarkably consistent with the data from the cryogenic system, noting that these were recorded in different sessions, with comparable SNRs and IED-yields overall. Importantly, the wearability of OPMs enabled the recording of seizure activity in a patient with hyperkinetic movements during the seizure. The observed ictal onset and semiology were in agreement with previous video- and stereo-EEG recordings. The relatively affordable technology, in combination with reduced running and maintenance costs, means that OPM-based MEG could be used more widely than current MEG systems, and may become an affordable alternative to scalp EEG, with the potential benefits of increased spatial accuracy, reduced sensitivity to volume conduction/field spread, and increased sensitivity to deep sources. Wearable MEG thus provides an unprecedented opportunity for epilepsy, and given its patient-friendliness, we envisage that it will not only be used for presurgical evaluation of epilepsy patients, but also for diagnosis after a first seizure.


Assuntos
Epilepsias Parciais , Epilepsia , Adulto , Criança , Humanos , Magnetoencefalografia/métodos , Convulsões/diagnóstico , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/cirurgia , Encéfalo
13.
Neuroimage ; 271: 120024, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36918138

RESUMO

Optically pumped magnetometers (OPMs) are an emerging lightweight and compact sensor that can measure magnetic fields generated by the human brain. OPMs enable construction of wearable magnetoencephalography (MEG) systems, which offer advantages over conventional instrumentation. However, when trying to measure signals at low frequency, higher levels of inherent sensor noise, magnetic interference and movement artefact introduce a significant challenge. Accurate characterisation of low frequency brain signals is important for neuroscientific, clinical, and paediatric MEG applications and consequently, demonstrating the viability of OPMs in this area is critical. Here, we undertake measurement of theta band (4-8 Hz) neural oscillations and contrast a newly developed 174 channel triaxial wearable OPM-MEG system with conventional (cryogenic-MEG) instrumentation. Our results show that visual steady state responses at 4 Hz, 6 Hz and 8 Hz can be recorded using OPM-MEG with a signal-to-noise ratio (SNR) that is not significantly different to conventional MEG. Moreover, we measure frontal midline theta oscillations during a 2-back working memory task, again demonstrating comparable SNR for both systems. We show that individual differences in both the amplitude and spatial signature of induced frontal-midline theta responses are maintained across systems. Finally, we show that our OPM-MEG results could not have been achieved without a triaxial sensor array, or the use of postprocessing techniques. Our results demonstrate the viability of OPMs for characterising theta oscillations and add weight to the argument that OPMs can replace cryogenic sensors as the fundamental building block of MEG systems.


Assuntos
Encéfalo , Magnetoencefalografia , Humanos , Criança , Magnetoencefalografia/métodos , Encéfalo/fisiologia , Campos Magnéticos , Razão Sinal-Ruído
15.
Ann N Y Acad Sci ; 1517(1): 107-124, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36065147

RESUMO

Magnetoencephalography (MEG) measures the small magnetic fields generated by current flow in neural networks, providing a noninvasive metric of brain function. MEG is well established as a powerful neuroscientific and clinical tool. However, current instrumentation is hampered by cumbersome cryogenic field-sensing technologies. In contrast, MEG using optically pumped magnetometers (OPM-MEG) employs small, lightweight, noncryogenic sensors that provide data with higher sensitivity and spatial resolution, a natural scanning environment (including participant movement), and adaptability to any age. However, OPM-MEG is new and the optimum way to design a system is unknown. Here, we construct a novel, 90-channel triaxial OPM-MEG system and use it to map motor function during a naturalistic handwriting task. Results show that high-precision magnetic field control reduced background fields to ∼200 pT, enabling free participant movement. Our triaxial array offered twice the total measured signal and better interference rejection compared to a conventional (single-axis) design. We mapped neural oscillatory activity to the sensorimotor network, demonstrating significant differences in motor network activity and connectivity for left-handed versus right-handed handwriting. Repeatability across scans showed that we can map electrophysiological activity with an accuracy ∼4 mm. Overall, our study introduces a novel triaxial OPM-MEG design and confirms its potential for high-performance functional neuroimaging.


Assuntos
Neuroimagem Funcional , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Encéfalo/fisiologia
16.
Sci Rep ; 12(1): 13561, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945239

RESUMO

Magnetically shielded rooms (MSRs) use multiple layers of materials such as MuMetal to screen external magnetic fields that would otherwise interfere with high precision magnetic field measurements such as magnetoencephalography (MEG). Optically pumped magnetometers (OPMs) have enabled the development of wearable MEG systems which have the potential to provide a motion tolerant functional brain imaging system with high spatiotemporal resolution. Despite significant promise, OPMs impose stringent magnetic shielding requirements, operating around a zero magnetic field resonance within a dynamic range of ± 5 nT. MSRs developed for OPM-MEG must therefore effectively shield external sources and provide a low remnant magnetic field inside the enclosure. Existing MSRs optimised for OPM-MEG are expensive, heavy, and difficult to site. Electromagnetic coils are used to further cancel the remnant field inside the MSR enabling participant movements during OPM-MEG, but present coil systems are challenging to engineer and occupy space in the MSR limiting participant movements and negatively impacting patient experience. Here we present a lightweight MSR design (30% reduction in weight and 40-60% reduction in external dimensions compared to a standard OPM-optimised MSR) which takes significant steps towards addressing these barriers. We also designed a 'window coil' active shielding system, featuring a series of simple rectangular coils placed directly onto the walls of the MSR. By mapping the remnant magnetic field inside the MSR, and the magnetic field produced by the coils, we can identify optimal coil currents and cancel the remnant magnetic field over the central cubic metre to just |B|= 670 ± 160 pT. These advances reduce the cost, installation time and siting restrictions of MSRs which will be essential for the widespread deployment of OPM-MEG.


Assuntos
Neuroimagem Funcional , Magnetoencefalografia , Encéfalo , Humanos , Campos Magnéticos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Magnetoencefalografia/métodos
17.
Trends Neurosci ; 45(8): 621-634, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35779970

RESUMO

Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing technologies, resulting in major barriers to utility. Here, we review a new generation of MEG technology that is beginning to lift many of these barriers. By exploiting quantum sensors, known as optically pumped magnetometers (OPMs), 'OPM-MEG' has the potential to dramatically outperform the current state of the art, promising enhanced data quality (better sensitivity and spatial resolution), adaptability to any head size/shape (from babies to adults), motion robustness (participants can move freely during scanning), and a less complex imaging platform (without reliance on cryogenics). We discuss the current state of this emerging technique and describe its far-reaching implications for neuroscience.


Assuntos
Neuroimagem Funcional , Magnetoencefalografia , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Humanos , Magnetoencefalografia/métodos
18.
Polymers (Basel) ; 14(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35745887

RESUMO

Thermoelectric materials enable the direct conversion of thermal to electrical energy. One application of this is ambient heat energy harvesting where relatively stable temperature gradients existing between the inside and outside of a building could be utilized to produce electricity. Buildings can thus change from energy consumers to energy generators. This could ultimately help reduce the surface temperatures and energy consumption of buildings, especially in urban areas. In this paper, research work carried out on developing and characterizing a cement-based thermoelectric material is presented. Cement-based samples are doped with different metal oxides (Bi2O3 and Fe2O3) to enhance their thermoelectric properties, which are defined through their Seebeck coefficient, electrical conductivity and thermal conductivity. The study also discusses the positive impact of moisture content on the electrical conductivity.

19.
Radiology ; 304(2): 429-434, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35503013

RESUMO

Background Magnetoencephalography (MEG) is an established method used to detect and localize focal interictal epileptiform discharges (IEDs). Current MEG systems house hundreds of cryogenic sensors in a rigid, one-size-fits-all helmet, which results in several limitations, particularly in children. Purpose To determine if on-scalp MEG based on optically pumped magnetometers (OPMs) alleviates the main limitations of cryogenic MEG. Materials and Methods In this prospective single-center study conducted in a tertiary university teaching hospital, participants underwent cryogenic (102 magnetometers, 204 planar gradiometers) and on-scalp (32 OPMs) MEG. The two modalities for the detection and localization of IEDs were compared. The t test was used to compare IED amplitude and signal-to-noise ratio (SNR). Distributed source modeling was performed on OPM-based and cryogenic MEG data. Results Five children (median age, 9.4 years [range, 5-11 years]; four girls) with self-limited idiopathic (n = 3) or refractory (n = 2) focal epilepsy were included. IEDs were identified in all five children with comparable sensor topographies for both MEG devices. IED amplitudes were 2.3 (7.2 of 3.1) to 4.6 (3.2 of 0.7) times higher (P < .001) with on-scalp MEG, and the SNR was 27% (16.7 of 13.2) to 60% (12.8 of 8.0) higher (P value range: .001-.009) with on-scalp MEG in all but one participant (P = .93), whose head movements created pronounced motion artifacts. The neural source of averaged IEDs was located at approximately 5 mm (n = 3) or higher (8.3 mm, n = 1; 15.6 mm, n = 1) between on-scalp and cryogenic MEG. Conclusion Despite the limited number of sensors and scalp coverage, on-scalp magnetoencephalography (MEG) based on optically pumped magnetometers helped detect interictal epileptiform discharges in school-aged children with epilepsy with a higher amplitude, higher signal-to-noise ratio, and similar localization value compared with conventional cryogenic MEG. Online supplemental material is available for this article. © RSNA, 2022 See also the editorial by Widjaja in this issue.


Assuntos
Epilepsias Parciais , Epilepsia , Encéfalo , Criança , Eletroencefalografia , Epilepsia/diagnóstico , Feminino , Humanos , Magnetoencefalografia/métodos , Estudos Prospectivos , Couro Cabeludo
20.
Neuroimage ; 253: 119084, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35278706

RESUMO

Magnetoencephalography (MEG) has been revolutionised by optically pumped magnetometers (OPMs). "OPM-MEG" offers higher sensitivity, better spatial resolution, and lower cost than conventional instrumentation based on superconducting quantum interference devices (SQUIDs). Moreover, because OPMs are small, lightweight, and portable they offer the possibility of lifespan compliance and (with control of background field) motion robustness, dramatically expanding the range of MEG applications. However, OPM-MEG remains nascent technology; it places stringent requirements on magnetic shielding, and whilst a number of viable systems exist, most are custom made and there have been no cross-site investigations showing the reliability of data. In this paper, we undertake the first cross-site OPM-MEG comparison, using near identical commercial systems scanning the same participant. The two sites are deliberately contrasting, with different magnetic environments: a "green field" campus university site with an OPM-optimised shielded room (low interference) and a city centre hospital site with a "standard" (non-optimised) MSR (higher interference). We show that despite a 20-fold difference in background field, and a 30-fold difference in low frequency interference, using dynamic field control and software-based suppression of interference we can generate comparable noise floors at both sites. In human data recorded during a visuo-motor task and a face processing paradigm, we were able to generate similar data, with source localisation showing that brain regions could be pinpointed with just ∼10 mm spatial discrepancy and temporal correlations of > 80%. Overall, our study demonstrates that, with appropriate field control, OPM-MEG systems can be sited even in city centre hospital locations. The methods presented pave the way for wider deployment of OPM-MEG.


Assuntos
Encéfalo , Magnetoencefalografia , Desenho de Equipamento , Humanos , Fenômenos Magnéticos , Magnetoencefalografia/métodos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...