Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38400307

RESUMO

This work explores the generation of James Webb Space Telescope (JWSP) imagery via image-to-image translation from the available Hubble Space Telescope (HST) data. Comparative analysis encompasses the Pix2Pix, CycleGAN, TURBO, and DDPM-based Palette methodologies, assessing the criticality of image registration in astronomy. While the focus of this study is not on the scientific evaluation of model fairness, we note that the techniques employed may bear some limitations and the translated images could include elements that are not present in actual astronomical phenomena. To mitigate this, uncertainty estimation is integrated into our methodology, enhancing the translation's integrity and assisting astronomers in distinguishing between reliable predictions and those of questionable certainty. The evaluation was performed using metrics including MSE, SSIM, PSNR, LPIPS, and FID. The paper introduces a novel approach to quantifying uncertainty within image translation, leveraging the stochastic nature of DDPMs. This innovation not only bolsters our confidence in the translated images but also provides a valuable tool for future astronomical experiment planning. By offering predictive insights when JWST data are unavailable, our approach allows for informed preparatory strategies for making observations with the upcoming JWST, potentially optimizing its precious observational resources. To the best of our knowledge, this work is the first attempt to apply image-to-image translation for astronomical sensor-to-sensor translation.

2.
EURASIP J Inf Secur ; 2023(1): 4, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292064

RESUMO

In the recent years, the copy detection patterns (CDP) attracted a lot of attention as a link between the physical and digital worlds, which is of great interest for the internet of things and brand protection applications. However, the security of CDP in terms of their reproducibility by unauthorized parties or clonability remains largely unexplored. In this respect, this paper addresses a problem of anti-counterfeiting of physical objects and aims at investigating the authentication aspects and the resistances to illegal copying of the modern CDP from machine learning perspectives. A special attention is paid to a reliable authentication under the real-life verification conditions when the codes are printed on an industrial printer and enrolled via modern mobile phones under regular light conditions. The theoretical and empirical investigation of authentication aspects of CDP is performed with respect to four types of copy fakes from the point of view of (i) multi-class supervised classification as a baseline approach and (ii) one-class classification as a real-life application case. The obtained results show that the modern machine-learning approaches and the technical capacities of modern mobile phones allow to reliably authenticate CDP on end-user mobile phones under the considered classes of fakes.

3.
Entropy (Basel) ; 22(9)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-33286710

RESUMO

In this paper, we consider an information bottleneck (IB) framework for semi-supervised classification with several families of priors on latent space representation. We apply a variational decomposition of mutual information terms of IB. Using this decomposition we perform an analysis of several regularizers and practically demonstrate an impact of different components of variational model on the classification accuracy. We propose a new formulation of semi-supervised IB with hand crafted and learnable priors and link it to the previous methods such as semi-supervised versions of VAE (M1 + M2), AAE, CatGAN, etc. We show that the resulting model allows better understand the role of various previously proposed regularizers in semi-supervised classification task in the light of IB framework. The proposed IB semi-supervised model with hand-crafted and learnable priors is experimentally validated on MNIST under different amount of labeled data.

4.
Entropy (Basel) ; 22(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33287005

RESUMO

We present a new decentralized classification system based on a distributed architecture. This system consists of distributed nodes, each possessing their own datasets and computing modules, along with a centralized server, which provides probes to classification and aggregates the responses of nodes for a final decision. Each node, with access to its own training dataset of a given class, is trained based on an auto-encoder system consisting of a fixed data-independent encoder, a pre-trained quantizer and a class-dependent decoder. Hence, these auto-encoders are highly dependent on the class probability distribution for which the reconstruction distortion is minimized. Alternatively, when an encoding-quantizing-decoding node observes data from different distributions, unseen at training, there is a mismatch, and such a decoding is not optimal, leading to a significant increase of the reconstruction distortion. The final classification is performed at the centralized classifier that votes for the class with the minimum reconstruction distortion. In addition to the system applicability for applications facing big-data communication problems and or requiring private classification, the above distributed scheme creates a theoretical bridge to the information bottleneck principle. The proposed system demonstrates a very promising performance on basic datasets such as MNIST and FasionMNIST.

5.
EURASIP J Inf Secur ; 2020(1): 10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685910

RESUMO

In recent years, classification techniques based on deep neural networks (DNN) were widely used in many fields such as computer vision, natural language processing, and self-driving cars. However, the vulnerability of the DNN-based classification systems to adversarial attacks questions their usage in many critical applications. Therefore, the development of robust DNN-based classifiers is a critical point for the future deployment of these methods. Not less important issue is understanding of the mechanisms behind this vulnerability. Additionally, it is not completely clear how to link machine learning with cryptography to create an information advantage of the defender over the attacker. In this paper, we propose a key-based diversified aggregation (KDA) mechanism as a defense strategy in a gray- and black-box scenario. KDA assumes that the attacker (i) knows the architecture of classifier and the used defense strategy, (ii) has an access to the training data set, but (iii) does not know a secret key and does not have access to the internal states of the system. The robustness of the system is achieved by a specially designed key-based randomization. The proposed randomization prevents the gradients' back propagation and restricts the attacker to create a "bypass" system. The randomization is performed simultaneously in several channels. Each channel introduces its own randomization in a special transform domain. The sharing of a secret key between the training and test stages creates an information advantage to the defender. Finally, the aggregation of soft outputs from each channel stabilizes the results and increases the reliability of the final score. The performed experimental evaluation demonstrates a high robustness and universality of the KDA against state-of-the-art gradient-based gray-box transferability attacks and the non-gradient-based black-box attacks (The results reported in this paper have been partially presented in CVPR 2019 (Taran et al., Defending against adversarial attacks by randomized diversification, 2019) & ICIP 2019 (Taran et al., Robustification of deep net classifiers by key-based diversified aggregation with pre-filtering, 2019)).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...