Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 717
Filtrar
1.
Phys Rev Lett ; 132(23): 232503, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38905650

RESUMO

We investigate the effects of two-body currents on magnetic dipole moments of medium-mass and heavy nuclei using the valence-space in-medium similarity renormalization group with chiral effective field theory interactions and currents. Focusing on near doubly magic nuclei from oxygen to bismuth, we have found that the leading two-body currents globally improve the agreement with experimental magnetic moments. Moreover, our results show the importance of multishell effects for ^{41}Ca, which suggest that the Z=N=20 gap in ^{40}Ca is not as robust as in ^{48}Ca. The increasing contribution of two-body currents in heavier systems is explained by the operator structure of the center-of-mass dependent Sachs term.

2.
Phys Rev Lett ; 132(18): 182502, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759198

RESUMO

The observation of neutrinoless double-beta (0νßß) decay would offer proof of lepton number violation, demonstrating that neutrinos are Majorana particles, while also helping us understand why there is more matter than antimatter in the Universe. If the decay is driven by the exchange of the three known light neutrinos, a discovery would, in addition, link the observed decay rate to the neutrino mass scale through a theoretical quantity known as the nuclear matrix element (NME). Accurate values of the NMEs for all nuclei considered for use in 0νßß experiments are therefore crucial for designing and interpreting those experiments. Here, we report the first comprehensive ab initio uncertainty quantification of the 0νßß-decay NME, in the key nucleus ^{76}Ge. Our method employs nuclear strong and weak interactions derived within chiral effective field theory and recently developed many-body emulators. Our result, with a conservative treatment of uncertainty, is an NME of 2.60_{-1.36}^{+1.28}, which, together with the best-existing half-life sensitivity and phase-space factor, sets an upper limit for effective neutrino mass of 187_{-62}^{+205} meV. The result is important for designing next-generation germanium detectors aiming to cover the entire inverted hierarchy region of neutrino masses.

4.
Indian J Urol ; 40(1): 25-30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314074

RESUMO

Introduction: Patient education is an essential element of the treatment pathway. Augmented reality (AR), with disease simulations and three-dimensional visuals, offers a developing approach to patient education. We aim to determine whether this tool can increase patient understanding of their disease and post-visit satisfaction in comparison to current standard of care (SOC) educational practices in a randomized control study. Methods: Our single-site study consisted of 100 patients with initial diagnoses of kidney masses or stones randomly enrolled in the AR or SOC arm. In the AR arm, a physician used AR software on a tablet to educate the patient. SOC patients were educated through traditional discussion, imaging, and hand-drawn illustrations. Participants completed pre- and post-physician encounter surveys adapted from the Press Ganey® patient questionnaire to assess understanding and satisfaction. Their responses were evaluated in the Readability Studio® and analyzed to quantify rates of improvement in self-reported understanding and satisfaction scores. Results: There was no significant difference in participant education level (P = 0.828) or visit length (27.6 vs. 25.0 min, P = 0.065) between cohorts. Our data indicate that the rate of change in pre- to post-visit self-reported understanding was similar in each arm (P ≥ 0.106 for all responses). The AR arm, however, had significantly higher patient satisfaction scores concerning the educational effectiveness and understanding of images used during the consultation (P < 0.05). Conclusions: While AR did not significantly increase self-reported patient understanding of their disease compared to SOC, this study suggests AR as a potential avenue to increase patient satisfaction with educational tools used during consultations.

5.
Phys Rev Lett ; 131(2): 022502, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505949

RESUMO

The excitation energy of the 1/2^{-} isomer in ^{99}In at N=50 is measured to be 671(37) keV and the mass uncertainty of the 9/2^{+} ground state is significantly reduced using the ISOLTRAP mass spectrometer at ISOLDE/CERN. The measurements exploit a major improvement in the resolution of the multireflection time-of-flight mass spectrometer. The results reveal an intriguing constancy of the 1/2^{-} isomer excitation energies in neutron-deficient indium that persists down to the N=50 shell closure, even when all neutrons are removed from the valence shell. This trend is used to test large-scale shell model, ab initio, and density functional theory calculations. The models have difficulties describing both the isomer excitation energies and ground-state electromagnetic moments along the indium chain.

6.
Phys Rev Lett ; 130(24): 242501, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37390416

RESUMO

Excited-state spectroscopy from the first experiment at the Facility for Rare Isotope Beams (FRIB) is reported. A 24(2)-µs isomer was observed with the FRIB Decay Station initiator (FDSi) through a cascade of 224- and 401-keV γ rays in coincidence with ^{32}Na nuclei. This is the only known microsecond isomer (1 µs≤T_{1/2}<1 ms) in the region. This nucleus is at the heart of the N=20 island of shape inversion and is at the crossroads of the spherical shell-model, deformed shell-model, and ab initio theories. It can be represented as the coupling of a proton hole and neutron particle to ^{32}Mg, ^{32}Mg+π^{-1}+ν^{+1}. This odd-odd coupling and isomer formation provides a sensitive measure of the underlying shape degrees of freedom of ^{32}Mg, where the onset of spherical-to-deformed shape inversion begins with a low-lying deformed 2^{+} state at 885 keV and a low-lying shape-coexisting 0_{2}^{+} state at 1058 keV. We suggest two possible explanations for the 625-keV isomer in ^{32}Na: a 6^{-} spherical shape isomer that decays by E2 or a 0^{+} deformed spin isomer that decays by M2. The present results and calculations are most consistent with the latter, indicating that the low-lying states are dominated by deformation.


Assuntos
Núcleo Celular , Coração , Isótopos , Nêutrons
7.
Nat Commun ; 14(1): 3182, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268608

RESUMO

The North Atlantic Storm Track acts as a conveyor belt for extratropical cyclones that frequently deliver high winds and rainfall to northwest European shelf seas. Storms are primarily considered detrimental to shelf sea stratification due to wind-driven mixing countering thermal buoyancy, but their impact on shelf scale stratification cycles remains poorly understood. Here, we show that storms trigger stratification through enhanced surface buoyancy from rainfall. A multidecadal model confirms that rainfall contributed to triggering seasonal stratification 88% of the time from 1982 to 2015. Stratification could be further modulated by large-scale climate oscillations, such as the Atlantic Multidecadal Variability (AMV), with stratification onset dates being twice as variable during a positive AMV phase than a negative one. Further insights into how changing storm activity will impact shelf seas are discussed beyond the current view of increasing wind-driven mixing, with significant implications for marine productivity and ecosystem function.

8.
Phys Rev Lett ; 129(14): 142502, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240396

RESUMO

The root mean square radii of the proton density distribution in ^{16-24}O derived from measurements of charge changing cross sections with a carbon target at ∼900A MeV together with the matter radii portray thick neutron skin for ^{22-24}O despite ^{22,24}O being doubly magic. Imprints of the shell closures at N=14 and 16 are reflected in local minima of their proton radii that provide evidence for the tensor interaction causing them. The radii agree with ab initio calculations employing the chiral NNLO_{sat} interaction, though skin thickness predictions are challenged. Shell model predictions agree well with the data.


Assuntos
Nêutrons , Prótons , Carbono
9.
Toxicol Rep ; 9: 945-950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875255

RESUMO

Waterpipe, also known as hookah, narghile or narghila, shisha or hubbly bubbly, is a tobacco-smoking device. Waterpipe tobacco is heated and consumed by a process of inhaling tobacco smoke, that bubbles through water before being inhaled. To date, limited studies have examined the transfer of waterpipe additives from tobacco to smoke. This study was designed to investigate the filtration ability of water in the waterpipe's bowl to define exposure to additives in waterpipe smoke, which is an essential requirement to perform toxicological risk assessments of waterpipe additives. Within this study, a standard smoking protocol (ISO 22486) was used to evaluate the transfer of > 40 additives from experimental and commercially available samples. These results are the first to provide such an extensive dataset of information showing transfer rates varying between 6% and 61% depending on the additive. Various physicochemical parameters of the additives including water solubility, partition coefficient, molecular weight, boiling point, and vapor pressure were also evaluated to seek to identify any correlation to transfer rate that may be later used to predict transfer. The amount of additive transfer from waterpipe tobacco to the smoke was found to be moderately correlated to vapor pressure (Pearson correlation coefficient = 0.33) with subsequent multivariate analysis using step-wise selection indicating 39% of the transfer rate variance can be explained collectively by the additive boiling point, molecular weight, vapor pressure and water solubility. These findings underscore the complexity of additive transfer and highlight the necessity of exposure assessment for meaningful waterpipe additive risk assessments.

10.
Nature ; 607(7918): 260-265, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35831598

RESUMO

In spite of the high-density and strongly correlated nature of the atomic nucleus, experimental and theoretical evidence suggests that around particular 'magic' numbers of nucleons, nuclear properties are governed by a single unpaired nucleon1,2. A microscopic understanding of the extent of this behaviour and its evolution in neutron-rich nuclei remains an open question in nuclear physics3-5. The indium isotopes are considered a textbook example of this phenomenon6, in which the constancy of their electromagnetic properties indicated that a single unpaired proton hole can provide the identity of a complex many-nucleon system6,7. Here we present precision laser spectroscopy measurements performed to investigate the validity of this simple single-particle picture. Observation of an abrupt change in the dipole moment at N = 82 indicates that, whereas the single-particle picture indeed dominates at neutron magic number N = 82 (refs. 2,8), it does not for previously studied isotopes. To investigate the microscopic origin of these observations, our work provides a combined effort with developments in two complementary nuclear many-body methods: ab initio valence-space in-medium similarity renormalization group and density functional theory (DFT). We find that the inclusion of time-symmetry-breaking mean fields is essential for a correct description of nuclear magnetic properties, which were previously poorly constrained. These experimental and theoretical findings are key to understanding how seemingly simple single-particle phenomena naturally emerge from complex interactions among protons and neutrons.

11.
Phys Rev Lett ; 128(7): 072502, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35244439

RESUMO

We present converged ab initio calculations of structure factors for elastic spin-dependent WIMP scattering off all nuclei used in dark matter direct-detection searches: ^{19}F, ^{23}Na, ^{27}Al, ^{29}Si, ^{73}Ge, ^{127}I, and ^{129,131}Xe. From a set of established two- and three-nucleon interactions derived within chiral effective field theory, we construct consistent WIMP-nucleon currents at the one-body level, including effects from axial-vector two-body currents. We then apply the in-medium similarity renormalization group to construct effective valence-space Hamiltonians and consistently transformed operators of nuclear responses. Combining the recent advances of natural orbitals with three-nucleon forces expressed in large spaces, we obtain basis-space converged structure factors even in heavy nuclei. Generally results are consistent with previous calculations but large uncertainties in ^{127}I highlight the need for further study.

12.
Phys Rev Lett ; 128(2): 022502, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089728

RESUMO

Collinear laser spectroscopy is performed on the nickel isotopes ^{58-68,70}Ni, using a time-resolved photon counting system. From the measured isotope shifts, nuclear charge radii R_{c} are extracted and compared to theoretical results. Three ab initio approaches all employ, among others, the chiral interaction NNLO_{sat}, which allows an assessment of their accuracy. We find agreement with experiment in differential radii δ⟨r_{c}^{2}⟩ for all employed ab initio methods and interactions, while the absolute radii are consistent with data only for NNLO_{sat}. Within nuclear density functional theory, the Skyrme functional SV-min matches experiment more closely than the Fayans functional Fy(Δr,HFB).

13.
Phys Rev Lett ; 127(18): 182502, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767381

RESUMO

We develop for the first time a microscopic global nucleon-nucleus optical potential with quantified uncertainties suitable for analyzing nuclear reaction experiments at next-generation rare-isotope beam facilities. Within the improved local density approximation and without any adjustable parameters, we begin by computing proton-nucleus and neutron-nucleus optical potentials from a set of five nuclear forces from chiral effective field theory for 1800 target nuclei in the mass range 12≤A≤242 for energies between 0 MeV

14.
Phys Rev Lett ; 126(4): 042502, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33576665

RESUMO

We calculate basis-space converged neutrinoless ßß-decay nuclear matrix elements for the lightest candidates: ^{48}Ca, ^{76}Ge, and ^{82}Se. Starting from initial two- and three-nucleon forces, we apply the ab initio in-medium similarity renormalization group to construct valence-space Hamiltonians and consistently transformed ßß-decay operators. We find that the tensor component is non-negligible in ^{76}Ge and ^{82}Se, and the resulting nuclear matrix elements are overall 25%-45% smaller than those obtained from the phenomenological shell model. While a final matrix element with uncertainties still requires substantial developments, this work nevertheless opens a path toward a true first-principles calculation of neutrinoless ßß decay in all nuclei relevant for ongoing large-scale searches.

15.
Phys Rev Lett ; 126(4): 042501, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33576685

RESUMO

We report high-precision mass measurements of ^{50-55}Sc isotopes performed at the LEBIT facility at NSCL and at the TITAN facility at TRIUMF. Our results provide a substantial reduction of their uncertainties and indicate significant deviations, up to 0.7 MeV, from the previously recommended mass values for ^{53-55}Sc. The results of this work provide an important update to the description of emerging closed-shell phenomena at neutron numbers N=32 and N=34 above proton-magic Z=20. In particular, they finally enable a complete and precise characterization of the trends in ground state binding energies along the N=32 isotone, confirming that the empirical neutron shell gap energies peak at the doubly magic ^{52}Ca. Moreover, our data, combined with other recent measurements, do not support the existence of a closed neutron shell in ^{55}Sc at N=34. The results were compared to predictions from both ab initio and phenomenological nuclear theories, which all had success describing N=32 neutron shell gap energies but were highly disparate in the description of the N=34 isotone.

16.
Phys Rev Lett ; 126(2): 022501, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512176

RESUMO

We predict the limits of existence of atomic nuclei, the proton and neutron drip lines, from the light through medium-mass regions. Starting from a chiral two- and three-nucleon interaction with good saturation properties, we use the valence-space in-medium similarity renormalization group to calculate ground-state and separation energies from helium to iron, nearly 700 isotopes in total. We use the available experimental data to quantify the theoretical uncertainties for our ab initio calculations towards the drip lines. Where the drip lines are known experimentally, our predictions are consistent within the estimated uncertainty. For the neutron-rich sodium to chromium isotopes, we provide predictions to be tested at rare-isotope beam facilities.

17.
Phys Rev Lett ; 125(11): 112503, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975962

RESUMO

A recently modified method to enable low-energy nuclear scattering results to be extracted from the discrete energy levels of the target-projectile clusters confined by harmonic potential traps is tested. We report encouraging results for neutron-α and neutron-^{24}O elastic scattering from analyzing the trapped levels computed using two different ab initio nuclear structure methods. The n-α results have also been checked against a direct ab initio reaction calculation. The n-^{24}O results demonstrate the approach's applicability for a large range of systems provided their spectra in traps can be computed by ab initio methods. A key ingredient is a rigorous understanding of the errors in the calculated energy levels caused by inevitable Hilbert-space truncations in the ab initio methods.

18.
Phys Rev Lett ; 124(9): 092502, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202869

RESUMO

We probe the N=82 nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of ^{132}Cd offers the first value of the N=82, two-neutron shell gap below Z=50 and confirms the phenomenon of mutually enhanced magicity at ^{132}Sn. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in ^{129}Cd and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field, and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalization group.

19.
J Neurophysiol ; 123(2): 608-629, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31800345

RESUMO

It has been over 60 years since peripheral efferent vestibular terminals were first identified in mammals, and yet the function of the efferent vestibular system remains obscure. One reason for the lack of progress may be due to our deficient understanding of the peripheral efferent synapse. Although vestibular efferent terminals were identified as cholinergic less than a decade after their anatomical characterization, the cellular mechanisms that underlie the properties of these synapses have had to be inferred. In this review we examine how recent mammalian studies have begun to reveal both nicotinic and muscarinic effects at these terminals and therefore provide a context for fast and slow responses observed in classic electrophysiological studies of the mammalian efferent vestibular system, nearly 40 years ago. Although incomplete, these new results together with those of recent behavioral studies are helping to unravel the mysterious and perplexing action of the efferent vestibular system. Armed with this information, we may finally appreciate the behavioral framework in which the efferent vestibular system operates.


Assuntos
Acetilcolina/metabolismo , Células Ciliadas Vestibulares/fisiologia , Neurônios Eferentes/fisiologia , Receptores Colinérgicos/metabolismo , Transmissão Sináptica/fisiologia , Nervo Vestibular/fisiologia , Animais , Células Ciliadas Vestibulares/metabolismo , Neurônios Eferentes/metabolismo , Nervo Vestibular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...