Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biometals ; 24(1): 85-92, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20853137

RESUMO

Marine bacterial isolates Vibrio sp. HC0601C5 and Halomonas meridiana str. HC4321C1 were isolated off the coast of southern California and were found to produce an expanded suite of previously identified amphiphilic siderophores. Specifically two new members of the amphibactin family, amphibactins S and T, which have a C14:1 ω-7 fatty acid and a saturated C12 fatty acid, respectively, were produced by Vibrio sp. HC0601C5. These siderophores are produced in addition to a number of previously described amphibactins and are excreted into the culture supernatant. Two new members of the aquachelin family of siderophores, aquachelins I and J, which have an hydroxylated C12 fatty acid and a saturated C10 fatty acid, respectively, were produced by Halomonas meridiana str. HC4321C1. These four new siderophores are more hydrophilic than their previously reported relatives, aquachelins A-D and the amphibactin suite of siderophores.


Assuntos
Halomonas/química , Sideróforos/isolamento & purificação , Vibrio/química , Halomonas/crescimento & desenvolvimento , Conformação Molecular , Filogenia , Sideróforos/biossíntese , Sideróforos/química , Estereoisomerismo , Vibrio/crescimento & desenvolvimento
2.
Inorg Chem ; 48(23): 11466-73, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19902959

RESUMO

The coordination of iron(III) to the marine amphiphilic marinobactin and aquachelin siderophores, as well as to petrobactin, an unusual 3,4-dihydroxybenzoyl siderophore is reported. Potentiometric titrations were performed on the apo siderophore to determine the ligand pK(a) values, as well as the complex formed with addition of 1 equiv of Fe(III). The log K(ML) values for Fe(III)-marinobactin-E and Fe(III)-aquachelin-C are 31.80 and 31.4, respectively, consistent with the similar coordination environment in each complex, while log K(ML) for Fe(III)-petrobactin is estimated to be about 43. The pK(a) of the beta-hydroxyaspartyl hydroxyl group was determined to be 10.8 by (1)H NMR titration. (13)C NMR and IR spectroscopy were used to investigate Ga(III) coordination to the marinobactins. The coordination-induced shifts (CIS) in the (13)C NMR spectrum of Ga(III)-marinobactin-C compared to apo-marinobactin-C indicates that the hydroxamate groups are coordinated to Ga(III); however, the lack of CISs for the carbons of the beta-hydroxyamide group suggests this moiety is not coordinated in the Ga(III) complex. Differences in the IR spectrum of Ga(III)-marinobactin-C and Fe(III)-marinobactin-C in the 1600-1700 cm(-1) region also corroborates Fe(III) is coordinated to the beta-hydroxyamide moiety, whereas Ga(III) is not coordinated.


Assuntos
Benzamidas/química , Compostos Férricos/química , Oligopeptídeos/química , Ácidos Palmíticos/química , Sideróforos/química , Concentração de Íons de Hidrogênio , Estrutura Molecular
3.
Inorg Chem ; 44(21): 7671-7, 2005 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-16212394

RESUMO

Alterobactin A is a siderophore produced by the oceanic bacterium Alteromonas luteoviolacea. The thermodynamic stability constant of the ferric alterobactin A (Alt-A) complex was estimated from electrochemical measurements on the basis of a previously reported linear relationship between the reduction potentials and the pH-independent stability constants for known iron(III) complexes. The reduction potential of the ferric alterobactin A complex determined by square wave voltammetry is -0.972 V vs SCE and reversible, corresponding to a thermodynamic stability constant of 10(51+/-2). Potentiometric titration of Fe(III)-Alt-A shows the release of six protons on complexation of Fe(III) to Alt-A. The 1H NMR resonances of the Ga(III)-Alt-A complex show that the C-4, C-5, and C-6 catecholate protons and the C(alpha) and C(beta) protons of both beta-hydroxyaspartate moieties are shifted downfield relative to the free ligand, which along with the potentiometric titration data is consistent with a complex in which Fe(III) is coordinated by both catecholate oxygen atoms and both oxygen atoms of each beta-hydroxyaspartate. The UV-vis spectrum of Fe(III)-Alt-A is invariant over the pH range 4-9, indicating the coordination does not change over a wide pH range. In addition, in the absence of a coordinated metal ion, the serine ester of Alt-A hydrolyzes forming Alt-B.


Assuntos
Compostos Férricos/química , Peptídeos Cíclicos/química , Alteromonas/química , Estabilidade de Medicamentos , Cinética , Modelos Moleculares , Estrutura Molecular , Peptídeos Cíclicos/isolamento & purificação , Sideróforos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...