Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 346(2): 272-83, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20692251

RESUMO

An epidermis surrounds all vertebrates, forming a water barrier between the external environment and the internal space of the organism. In the zebrafish, the embryonic epidermis consists of an outer enveloping layer (EVL) and an inner basal layer that have distinct embryonic origins. Differentiation of the EVL requires the maternal effect gene poky/ikk1 in EVL cells prior to establishment of the basal layer. This requirement is transient and maternal Ikk1 is sufficient to allow establishment of the EVL and formation of normal skin in adults. Similar to the requirement for Ikk1 in mouse epidermis, EVL cells in poky mutants fail to exit the cell cycle or express specific markers of differentiation. In spite of the similarity in phenotype, the molecular requirement for Ikk1 is different between mouse and zebrafish. Unlike the mouse, EVL differentiation requires functioning Poky/Ikk1 kinase activity but does not require the HLH domain. Previous work suggested that the EVL was a transient embryonic structure, and that maturation of the epidermis required replacement of the EVL with cells from the basal layer. We show here that the EVL is not lost during embryogenesis but persists to larval stages. Our results show that while the requirement for poky/ikk1 is conserved, the differences in molecular activity indicate that diversification of an epithelial differentiation program has allowed at least two developmental modes of establishing a multilayered epidermis in vertebrates.


Assuntos
Diferenciação Celular/genética , Embrião não Mamífero/metabolismo , Epiderme/embriologia , Quinase I-kappa B/genética , Peixe-Zebra/embriologia , Animais , Epiderme/metabolismo , Quinase I-kappa B/metabolismo , Mutação , Transdução de Sinais , Peixe-Zebra/metabolismo
2.
Dev Dyn ; 238(11): 2936-47, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19842183

RESUMO

Alpha-actinins are actin microfilament crosslinking proteins. Vertebrate actinins fall into two classes: the broadly-expressed actinins 1 and 4 (actn1 and actn4) and muscle-specific actinins, actn2 and actn3. Members of this family have numerous roles, including regulation of cell adhesion, cell differentiation, directed cell motility, intracellular signaling, and stabilization of f-actin at the sarcomeric Z-line in muscle. Here we identify five zebrafish actinin genes including two paralogs of ACTN3. We describe the temporal and spatial expression patterns of these genes through embryonic development. All zebrafish actinin genes have unique expression profiles, indicating specialization of each gene. In particular, the muscle actinins display preferential expression in different domains of axial, pharyngeal, and cranial musculature. There is no identified avian actn3 and approximately 16% of humans are null for ACTN3. Duplication of actn3 in the zebrafish indicates that variation in actn3 expression may promote physiological diversity in muscle function among vertebrates.


Assuntos
Actinina/biossíntese , Embrião não Mamífero/embriologia , Músculo Esquelético/embriologia , Peixe-Zebra/embriologia , Actinina/química , Actinina/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero/metabolismo , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Filogenia , Alinhamento de Sequência , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...