Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 11(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073093

RESUMO

Soybean meal (SBM) and canola meal (CM) are protein supplements used in lactating dairy cow diets and, recently, an enteric methane-mitigating effect (i.e., lower Ym value) was reported for CM. Before recommending CM as a greenhouse gas (GHG) mitigation strategy, it is necessary to examine the net impact on total GHG emissions from milk production. The objective was to determine whether using CM rather than SBM in lactating dairy cow diets decreases GHG per kilogram of fat and protein corrected milk (FPCM), and whether the decrease depends upon where the meals are produced. Cradle to farm-gate life cycle assessments were conducted for a simulated dairy farm in eastern (Quebec) and western (Alberta) Canada. Scenarios examined the source of protein meal, location where meals were produced, and the methane-mitigating effect of CM. The Holos model was used to estimate GHG emissions from animals, manure, crop production, imported feeds, and energy use. GHG intensities (CO2e/kg FPCM) were 0.85-1.02 in the east and 1.07-1.11 in the west for the various scenarios, with enteric methane comprising 34 to 40% of total emissions. CM produced in western Canada with a low up-stream emission factor and low Ym value reduced CO2e/kg FPCM by 3% (western farm) to 6.6% (eastern farm) compared with SBM. We conclude that using CM rather than SBM in the diet of lactating dairy cows can be a GHG mitigation strategy depending upon where it is produced and whether it decreases enteric methane emissions.

2.
Transl Anim Sci ; 2(4): 428-438, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32704725

RESUMO

The objective of this in situ study was to evaluate the rumen degradability of kernels from short-season corn hybrids grown for silage in Western Canada (Lacombe, AB) and determine whether decreasing kernel particle size would enhance ruminal degradability in a similar manner for all hybrids. The study was a completely randomized design with 3 beef cows (replicates) and a 6 (hybrid) × 3 (particle size) factorial arrangement of treatments. Kernels were processed to generate three different particle sizes: large (2.3 mm), medium (1.4 mm), and small (0.7 mm). Processed samples were incubated in the rumen for 0, 3, 6, 12, 24, and 48 h using the in situ method and degradation kinetics of DM and starch were determined. Effective rumen degradability (ED) was estimated using a passage rate of 0.04 (ED4), 0.06 (ED6), and 0.08/h (ED8). Hybrids exhibited a range in whole plant DM content (23.7 to 25.0%), starch content (15.9 to 28.1% DM), kernel hardness (21.9 to 34.4 s/20 g) and density (3.57 to 4.18 g/mL), and prolamin content (8.24 to 11.34 g/100 g starch). Differences in digestion kinetics among hybrids were generally more pronounced for starch than DM. The hybrids differed in starch degradability (P < 0.05), with earlier maturing hybrids having lower A fraction, lower k d, and lower ED, with hybrid effects on ED being accentuated with faster passage rate. Kernel DM content (r = -0.85, -0.87), hardness (r = -0.89, -0.86), and density (r = -0.84, -0.85) were negatively correlated with ED4 and ED8 of starch, respectively, due mainly to decreased k d of fraction B. Reducing the particle size of kernels increased ED of starch due to increased A fraction and k d of the B fraction. A tendency (P = 0.09) for hybrid × processing effects for ED6 and ED8 indicated that processing had greater effects on increasing ED of starch for earlier maturing hybrids. We conclude that short-season hybrids that mature early may have lower ED of DM and starch and would benefit from prolonged ensilage time. Kernel processing during silage making is recommended for short-season corn hybrids as a means of enhancing rumen availability of starch.

3.
Asian-Australas J Anim Sci ; 30(4): 479-485, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27507183

RESUMO

OBJECTIVE: The effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro dry matter (DM) disappearance (DMD), gas production and fermentation pH were investigated for feedlot cattle. METHODS: Rumen fluid from four fistulated feedlot cattle fed a diet of 860 dry-rolled barley grain, 90 maize silage and 50 supplement g/kg DM was used as inoculum in 3 batch culture in vitro studies. In Experiment 1, dry-rolled barley and barley ground through a 1-, 2-, or 4-mm screen were used to obtain four substrates differing in particle size. In Experiment 2, cellulase enzyme (ENZ) from Acremonium cellulolyticus Y-94 was added to dry-rolled and ground barley (2-mm) at 0, 0.1, 0.5, 1, and 2 mg/g, while Experiment 3 examined the interactions between microwaving (0, 30, and 60 s microwaving) and ENZ addition (0, 1, and 2 mg/g) using dry-rolled barley and 2-mm ground barley. RESULTS: In Experiment 1, decreasing particle size increased DMD and gas production, and decreased fermentation pH (p<0.01). The DMD (g/kg DM) of the dry-rolled barley after 24 h incubation was considerably lower (p<0.05) than that of the ground barley (119.1 dry-rolled barley versus 284.8 for 4-mm, 341.7 for 2-mm; and 358.6 for 1-mm). In Experiment 2, addition of ENZ to dry-rolled barley increased DMD (p<0.01) and tended to increase (p = 0.09) gas production and decreased (p<0.01) fermentation pH, but these variables were not affected by ENZ addition to ground barley. In Experiment 3, there were no interactions between microwaving and ENZ addition after microwaving for any of the variables. Microwaving had minimal effects (except decreased fermentation pH), but consistent with Experiment 2, ENZ addition increased (p<0.01) DMD and gas production, and decreased (p<0.05) fermentation pH of dry-rolled barley, but not ground barley. CONCLUSION: We conclude that cellulase enzymes can be used to increase the rumen disappearance of barley grain when it is coarsely processed as in the case of dry-rolled barley. However, microwaving of barley grain offered no further improvements in ruminal fermentation of barley grain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...