Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 25(20): 5186-5201, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30645021

RESUMO

A systematic screening study of the exohedral reactivity of the reduced fullerenes (fullerenides) C60 2- and C60 ⋅- is reported. These doubly and singly negatively charged carbon cages were prepared by two-fold reduction of C60 with potassium, leading to K2 C60 , or by in situ monoreduction with the radical anion of benzonitrile PhCN⋅- , respectively. Several series of electrophiles, including geminal and distant dihalides, benzyl bromides, and diazonium compounds, were employed as addition partners. In general, the investigated bromides proved to be the most suitable reaction partners. A series of fullerene adducts and cycloadducts involving either 1,2- or 1,4-addition patterns, depending on the precise architecture and the steric demand of the addends, were synthesized and fully characterized. Some of the reaction products are unprecedented and inaccessible forms of neutral C60 . The fullerenide chemistry presented here closely resembles related reactions of graphenides and carbon nanotubides, which are the most powerful methods for the functionalization of these macromolecular forms of synthetic carbon allotropes (SCAs). Activation of C60 by negative charging represents a little explored concept of fullerene chemistry, providing both new insights of fullerene reactivity itself and new types of exohedral derivatives.

2.
Angew Chem Int Ed Engl ; 56(40): 12184-12190, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28782166

RESUMO

Hexa-peri-hexabenzocoronides (HBC) was successfully used as a model system for investigating the complex mechanism of the reductive functionalization of graphene. The well-defined molecular HBC system enabled deeper insights into the mechanism of the alkylation of reductively activated nanographenes. The separation and complete characterization of alkylation products clearly demonstrate that nanographene functionalization proceeds with exceptionally high regio- and stereoselectivities on the HBC scaffold. Experimental and theoretical studies lead to the conclusion that the intact basal graphene plane is chemically inert and addend binding can only take place at either preexisting defects or close to the periphery.

3.
Chemistry ; 23(38): 9014-9017, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28464445

RESUMO

We report on the synthesis and the structure elucidation of the elusive azafullerene pentachloride C59 NCl5 , which was obtained by high temperature halogenation of (C59 N)2 . The exceptionally strong host-guest interaction of the title compound in the solid is discussed.

4.
Nat Commun ; 7: 12411, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27506380

RESUMO

Herein, we report on a significant discovery, namely, the quantitative discharging of reduced graphite forms, such as graphite intercalation compounds, graphenide dispersions and graphenides deposited on surfaces with the simple solvent benzonitrile. Because of its comparatively low reduction potential, benzonitrile is reduced during this process to the radical anion, which exhibits a red colour and serves as a reporter molecule for the quantitative determination of negative charges on the carbon sheets. Moreover, this discovery reveals a very fundamental physical-chemical phenomenon, namely a quantitative solvent reduction induced and electrostatically driven mass transport of K(+) ions from the graphite intercalation compounds into the liquid. The simple treatment of dispersed graphenides suspended on silica substrates with benzonitrile leads to the clean conversion to graphene. This unprecedented procedure represents a rather mild, scalable and inexpensive method for graphene production surpassing previous wet-chemical approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...