Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 591(10): 1408-1418, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28417461

RESUMO

In Aspergillus niger, the enzymes encoded by gaaA, gaaB, and gaaC catabolize d-galacturonic acid (GA) consecutively into l-galactonate, 2-keto-3-deoxy-l-galactonate, pyruvate, and l-glyceraldehyde, while GaaD converts l-glyceraldehyde to glycerol. Deletion of gaaB or gaaC results in severely impaired growth on GA and accumulation of l-galactonate and 2-keto-3-deoxy-l-galactonate, respectively. Expression levels of GA-responsive genes are specifically elevated in the ∆gaaC mutant on GA as compared to the reference strain and other GA catabolic pathway deletion mutants. This indicates that 2-keto-3-deoxy-l-galactonate is the inducer of genes required for GA utilization.


Assuntos
Aspergillus niger/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Açúcares Ácidos/metabolismo , Aspergillus niger/enzimologia , Aspergillus niger/genética , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica , Redes e Vias Metabólicas , Mutação
2.
Appl Microbiol Biotechnol ; 100(14): 6309-6317, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27003267

RESUMO

The ascomycete Aspergillus niger is widely used in the biotechnology, for instance in producing most of the world's citric acid. It is also known as a major food and feed contaminant. While generation of gene knockouts for functional genomics has become feasible in ku70 mutants, analyzing gene functions or metabolic pathways remains a laborious task. An unbiased transposon-based mutagenesis approach may aid this process of analyzing gene functions by providing mutant libraries in a short time. The Vader transposon is a non-autonomous DNA-transposon, which is activated by the homologous tan1-transposase. However, in the most commonly used lab strain of A. niger (N400 strain and derivatives), we found that the transposase, encoded by the tan1 gene, is mutated and inactive. To establish a Vader transposon-based mutagenesis system in the N400 background, we expressed the functional transposase of A. niger strain CBS 513.88 under the control of an inducible promoter based on the Tet-on system, which is activated in the presence of the antibiotic doxycycline (DOX). Increasing amounts of doxycycline lead to higher Vader excision frequencies, whereas little to none activity of Vader was observed without addition of doxycycline. Hence, this system appears to be suitable for producing stable mutants in the A. niger N400 background.


Assuntos
Aspergillus niger/genética , Elementos de DNA Transponíveis/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Mutagênese , Transposases/metabolismo , Sequência de Aminoácidos , Meios de Cultura/química , DNA Fúngico/genética , Doxiciclina/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Higromicina B/farmacologia , Transposases/genética
3.
Fungal Genet Biol ; 82: 32-42, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26127014

RESUMO

Aspergillus niger is an important industrial fungus expressing a broad spectrum of pectinolytic genes. The main constituent of pectin, polygalacturonic acid (PGA), is degraded into galacturonic acid (GA) by the combined activity of endo- and exo-polygalacturonases some of which are specifically induced by GA. The regulatory mechanisms that control the expression of genes encoding PGA-degrading enzymes are not well understood. Based on available genome-wide expression profiles from literature, we selected five genes that were specifically induced by GA. These genes include three exo-polygalacturonases (pgaX, pgxB and pgxC), a GA transporter (gatA), and an intracellular enzyme involved in GA metabolism (gaaB). These five genes contain a conserved motif (5'-TCCNCCAAT-3') in their promoter regions, which we named GARE (galacturonic acid-responsive element). Promoter deletion studies and site-directed mutagenesis of the conserved motif of the pgaX gene showed that the conserved element is required for GA-mediated induction. A set of promoter reporter strains was constructed by fusing the promoter region of the five above-mentioned genes to the amdS reporter gene. Expression of the amdS gene is quantitatively correlated with ability to utilise acetamide as an N-source, hence higher expression of amdS improves growth of the strain on acetamide and therefore can be used as an in vivo reporter for gene expression. Growth analysis of the reporter strains indicated that four genes (pgaX, pgxB, pgxC, and gatA) are specifically induced by GA. The in vivo promoter reporter strains were also used to monitor carbon catabolite repression control. Except for gaaB, all promoter-reporter genes analysed were repressed by glucose in a glucose concentration-dependent way. Interestingly, the strength of glucose repression was different for the tested promoters. CreA is important in mediating carbon catabolite repression as deletion of the creA gene in the reporter strains abolished carbon catabolite repression for most promoters. Interestingly, the pgxC promoter was still repressed by glucose even in the creA null background, suggesting a role for alternative repression mechanisms. Finally, we showed that low concentrations of GA are required to induce gene expression of pgaX, pgxB, and pgxC even under derepressing conditions. The results obtained are consistent with a model in which a GA-specific transcription factor is activated by GA or a GA-derivative, which binds to the conserved motif, possibly in combination with the HAP-complex, to drive GA-specific gene expression.


Assuntos
Aspergillus niger/efeitos dos fármacos , Aspergillus niger/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Ácidos Hexurônicos/farmacologia , Sítios de Ligação , Repressão Catabólica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Genes Fúngicos , Genes Reporter , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Elementos de Resposta
4.
FEBS J ; 277(15): 3203-18, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20597979

RESUMO

By genome analysis, we previously identified Pex14/17p as a putative novel peroxin of Penicillium chrysogenum. Here, we show that Pex14/17p is a component of the peroxisomal membrane that is essential for efficient peroxisomal targeting signal 1 and peroxisomal targeting signal 2 matrix protein import, implying that the protein is indeed a genuine peroxin. Additionally, a PEX14/17 deletion strain is affected in conidiospore formation. Pex14/17p has properties of both Pex14p and Pex17p, in that the N-terminus of this protein is similar to the highly conserved Pex5p-binding region present in the N-termini of Pex14p proteins, whereas its C-terminus shows weak similarity to yeast Pex17p proteins. We have identified a novel motif in both Pex17p and Pex14/17p that is absent in Pex14p. We show that an N-terminally truncated, but not a C-terminally truncated, Pex14/17p is able to complement both the matrix protein import and sporulation defects of a Delta pex14/17 strain, implying that it is the Pex17p-related portion of the protein that is crucial for its function as a peroxin. Possibly, this compensates for the fact that P. chrysogenum lacks an authenthic Pex17p. We also show that, in P. chrysogenum, Pex14/17p plays a role in making the penicillin biosynthesis process more efficient.


Assuntos
Penicilinas/biossíntese , Penicillium chrysogenum/química , Peroxissomos/química , Proteínas Fúngicas , Membranas Intracelulares/química , Proteínas de Membrana , Proteínas de Membrana Transportadoras , Peroxissomos/ultraestrutura
5.
Fungal Genet Biol ; 46 Suppl 1: S2-13, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19146970

RESUMO

The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology.


Assuntos
Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Genoma Fúngico , Genômica , Aspergillus nidulans/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...