Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(10): 16987-16995, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36153959

RESUMO

Large ordered islands of aluminum phthalocyanine (AlPc) molecules, which are unstable in air, are synthesized from ClAlPc on Pb(100) via dechlorination. Low-temperature scanning tunneling microscopy reveals that isolated AlPc molecules lose their spin moment on superconducting Pb(100). Molecular magnetism, which is detected via Yu-Shiba-Rusinov (YSR) resonances, may be restored by surrounding a molecule with an array of neighbor molecules in artificial arrays or in a self-assembled monolayer. Unlike phthalocyanine (H2Pc) or lead phthalocyanine (PbPc) monolayers, where the YSR energy was found to depend strongly on the detailed configuration of the neighboring molecules, we find a similar magnetic moment on every second molecule for AlPc. In addition, YSR resonances lead to unusually high conductance peaks that are due to vibrational excitations. Twelve vibrational modes are resolved and discussed with respect to similar results from PbPc. The enhancement of the inelastic transitions is tentatively attributed to the large amplitude of the YSR resonances and the long lifetime of electrons in the molecular bound state. By assembling neighboring molecules into configurations that differ from those of the monolayer, the YSR energy may be fine-tuned, and a simple spin-state switching device is constructed.

2.
Phys Rev Lett ; 129(11): 116801, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154405

RESUMO

Molecular vibrational spectroscopy with the scanning tunneling microscope is feasible but usually detects few vibrational modes. We harness sharp Yu-Shiba-Rusinov states observed from molecules on a superconductor to significantly enhance the vibrational signal. From a lead phthalocyanine molecule 46 vibrational peaks are resolved enabling a comparison with calculated modes. The energy resolution is improved beyond the thermal broadening limit and shifts induced by neighbor molecules or the position of the microscope tip are determined. Vice versa, spectra of vibrational modes are used to measure the effect of an electrical field on the energy of Yu-Shiba-Rusinov states. The method may help to further probe the interaction of molecules with their environment and to better understand selection rules for vibrational excitations.

3.
ACS Nano ; 14(12): 17387-17395, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33225694

RESUMO

Diamagnetic H2 phthalocyanine molecules are probed on superconducting Pb(100) using a low-temperature scanning tunneling micoscope (STM). In supramolecular arrays made with the STM, the molecules acquire a spin as detected via the emergence of Yu-Shiba-Rusinov resonances. The spin moments vary among the molecules and are determined by the electrostatic field that results from polar bonds in the surrounding Pc molecules. The moments are further finely tuned by repositioning the hydrogen atoms of the inner macrocycle of the surrounding molecules.

4.
Nanoscale ; 11(18): 9015-9022, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31020977

RESUMO

The rotation of entire molecules or large moieties happens at 100 ps time scales and the transition process itself is experimentally inaccessible to scanning probe techniques. However, the reversible switching of a molecule between more than two metastable states allows to assign a rotational switching direction. Rotational switching is a phenomenon that is particularly interesting with regard to possible applications in molecular motors. In this work, single tetraphenylmethane molecules deposited on a Au(111) surface were studied in a low temperature scanning tunneling microscope (STM). These molecules comprise rotational axes mounted on a tripodal sulfur-anchored stand and with the STM tip, we were able to induce transitions between six rotational states of the molecular motif. We were able to identify critical parameters for the onset of rotational switching and to characterize the influence of the local environment. The subtle difference between fcc and hcp stacking and the rotational state of neighboring molecules clearly influence the population of the rotational states.

5.
Nat Commun ; 8: 14672, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276442

RESUMO

Molecular electronics is considered a promising approach for future nanoelectronic devices. In order that molecular junctions can be used as electrical switches or even memory devices, they need to be actuated between two distinct conductance states in a controlled and reproducible manner by external stimuli. Here we present a tripodal platform with a cantilever arm and a nitrile group at its end that is lifted from the surface. The formation of a coordinative bond between the nitrile nitrogen and the gold tip of a scanning tunnelling microscope can be controlled by both electrical and mechanical means, and leads to a hysteretic switching of the conductance of the junction by more than two orders of magnitude. This toggle switch can be actuated with high reproducibility so that the forces involved in the mechanical deformation of the molecular cantilever can be determined precisely with scanning tunnelling microscopy.

6.
Chemistry ; 22(37): 13218-35, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27505302

RESUMO

The efficient synthesis of tripodal platforms based on tetraphenylmethane with three acetyl-protected thiol groups in either meta or para positions relative to the central sp(3) carbon for deposition on Au (111) surfaces is reported. These platforms are intended to provide a vertical arrangement of the substituent in position 4 of the perpendicular phenyl ring and an electronic coupling to the gold substrate. The self-assembly features of both derivatives are analyzed on Au (111) surfaces by low-temperature ultra-high-vacuum STM, high-resolution X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and reductive voltammetric desorption studies. These experiments indicated that the meta derivative forms a well-ordered monolayer, with most of the anchoring groups bound to the surface, whereas the para derivative forms a multilayer film with physically adsorbed adlayers on the chemisorbed para monolayer. Single-molecule conductance values for both tripodal platforms are obtained through an STM break junction experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...